Блузки и рубашки

Закон паскаля для жидкостей и газов опыт. Закон Паскаля (Основное уравнение Гидростатики)

Блез Паскаль - французский математик, физик и философ, живший в середине семнадцатого века. Исследовал поведение жидкостей и газов, изучал давление.

Он заметил, что форма сосуда не оказывает никакого влияния на давление жидкости внутри его. А также сформулировал принцип: жидкости и газы передают одинаково по всем направлениям оказываемое на них давление.
Этот принцип называют законом Паскаля для жидкостей и газов.

Необходимо понимать, что в этом законе не учитывалась сила тяжести, действующая на жидкость. В действительности, давление жидкости растёт с глубиной из-за притяжения к Земле, и это гидростатическое давление.

Для вычисления его значения применяется формула:
- давление столба жидкости.

Полное давление жидкости на любой глубине складывается из гидростатического давления и давления, связанного с внешним сжатием:

где p0 - внешнее давление, например, поршня в сосуде с водой.

Применение закона Паскаля в гидравлике

Гидравлические системы используют несжимаемые жидкости, такие как нефть или вода, чтобы передавать давление из одной точки в другую внутри жидкости с выигрышем в силе. Гидравлические устройства используются для дробления твёрдых веществ, в прессах. У воздушных судов гидравлика установлена в тормозные системы и шасси.
Так как закон Паскаля справедлив и для газов, то в технике существуют пневматические системы, использующие давление воздуха.

Архимедова сила. Условие плавания тел

Знание архимедовой силы (по-другому - выталкивающей) важно при попытке понять, почему некоторые тела плавают, в то время как другие тела тонут.
Рассмотрим пример. Человек находится в бассейне. Когда он полностью погружается под воду, он легко может выполнить сальто, сделать кувырок или очень высоко подпрыгнуть. На суше выполнить такие трюки намного сложнее.
Такая ситуация в бассейне возможна из-за того, что на человека действует в воде архимедова сила. В жидкости давление возрастает с глубиной (это справедливо и для газа). Когда тело находится полностью под водой, то давление жидкости снизу тела преобладает над давлением сверху, и тело начинает всплывать.

Закон Архимеда

На тело в жидкости (газе) действует выталкивающая сила, равная по величине весу того количества жидкости (газа), которое вытеснено погружённой частью тела.

  • Fт - сила тяжести;
  • Fа - архимедова сила;
  • ρж - плотность жидкости или газа;
  • Vв. ж. - объём вытесненной жидкости (газа), равный объёму погружённой части тела;
  • Pв. ж. - вес вытесненной жидкости.

Условие плавания

  1. FТ> FA - тело тонет;
  2. FТ< FA - тело поднимается к поверхности до тех пор, пока не окажется в положении равновесия и не начнёт плыть;
  3. FТ = FA - тело находится в равновесии в водной или газовой среде (плавает).

Закон Паскаля формулируется так:

Давление, производимое на жидкость или газ, передается в любую точку без изменений во всех направлениях.

Закон сформулирован французским учёным Блезом Паскалем .

Следует обратить внимание на то, что в законе Паскаля речь идет не о давлениях в разных точках, а о возмущениях давления, поэтому закон справедлив и для жидкости в поле силы тяжести. В случае движущейся несжимаемой жидкости можно условно говорить о справедливости закона Паскаля, ибо добавление произвольной постоянной величины к давлению не меняет вида уравнения движения жидкости (уравнения Эйлера или, если учитывается действие вязкости, уравнения Навье - Стокса), однако в этом случае термин закон Паскаля как правило не применяется.

Закон Паскаля является следствием закона сохранения энергии и справедлив и для сжимаемых жидкостей (газов) .

Формула закона Паскаля и его применение

На основе закона Паскаля работают различные гидравлические устройства: тормозные системы, гидравлические прессы и др.

См. также

Напишите отзыв о статье "Закон Паскаля"

Примечания

Отрывок, характеризующий Закон Паскаля

– А где Lise? – спросил он, только улыбкой отвечая на ее вопрос.
– Она так устала, что заснула у меня в комнате на диване. Ax, Andre! Que! tresor de femme vous avez, – сказала она, усаживаясь на диван против брата. – Она совершенный ребенок, такой милый, веселый ребенок. Я так ее полюбила.
Князь Андрей молчал, но княжна заметила ироническое и презрительное выражение, появившееся на его лице.
– Но надо быть снисходительным к маленьким слабостям; у кого их нет, Аndre! Ты не забудь, что она воспитана и выросла в свете. И потом ее положение теперь не розовое. Надобно входить в положение каждого. Tout comprendre, c"est tout pardonner. [Кто всё поймет, тот всё и простит.] Ты подумай, каково ей, бедняжке, после жизни, к которой она привыкла, расстаться с мужем и остаться одной в деревне и в ее положении? Это очень тяжело.
Князь Андрей улыбался, глядя на сестру, как мы улыбаемся, слушая людей, которых, нам кажется, что мы насквозь видим.
– Ты живешь в деревне и не находишь эту жизнь ужасною, – сказал он.
– Я другое дело. Что обо мне говорить! Я не желаю другой жизни, да и не могу желать, потому что не знаю никакой другой жизни. А ты подумай, Andre, для молодой и светской женщины похорониться в лучшие годы жизни в деревне, одной, потому что папенька всегда занят, а я… ты меня знаешь… как я бедна en ressources, [интересами.] для женщины, привыкшей к лучшему обществу. M lle Bourienne одна…
– Она мне очень не нравится, ваша Bourienne, – сказал князь Андрей.
– О, нет! Она очень милая и добрая,а главное – жалкая девушка.У нее никого,никого нет. По правде сказать, мне она не только не нужна, но стеснительна. Я,ты знаешь,и всегда была дикарка, а теперь еще больше. Я люблю быть одна… Mon pere [Отец] ее очень любит. Она и Михаил Иваныч – два лица, к которым он всегда ласков и добр, потому что они оба облагодетельствованы им; как говорит Стерн: «мы не столько любим людей за то добро, которое они нам сделали, сколько за то добро, которое мы им сделали». Mon pеre взял ее сиротой sur le pavе, [на мостовой,] и она очень добрая. И mon pere любит ее манеру чтения. Она по вечерам читает ему вслух. Она прекрасно читает.
– Ну, а по правде, Marie, тебе, я думаю, тяжело иногда бывает от характера отца? – вдруг спросил князь Андрей.
Княжна Марья сначала удивилась, потом испугалась этого вопроса.
– МНЕ?… Мне?!… Мне тяжело?! – сказала она.
– Он и всегда был крут; а теперь тяжел становится, я думаю, – сказал князь Андрей, видимо, нарочно, чтоб озадачить или испытать сестру, так легко отзываясь об отце.

Давление – это скалярная величина, равная отношению нормальной компоненты силы, действующей на элементарную площадку внутри жидкости, к площади этой элементарной площадки.

Касательные составляющие силы DF не существенны, т.к. приводят к текучести жидкости, т.е. нарушению равновесия.

Единицы давления. В СИ – Па (паскаль): 1 Па = 1 Н/м 2 ;

в СГС – дин/см 2 .

Внесистемные единицы: физическая (нормальная) атмосфера (атм) равна давлению столба ртути высотой 760 мм;

миллиметр ртутного столба (мм. рт. ст.).

1мм. рт. ст. = r рт. gh = (13,6×10 3 кг/м 3)×(9,81 м/с 2)×(10 -3 м) = 133 Па.

1 атм = 760 мм. рт. ст. = 1,01×10 5 Па.

Свойства покоящейся жидкости (газа).

1. Сила, вызванная давлением покоящейся жидкости, действует всегда перпендикулярно поверхности, с которой эта среда соприкасается.

2. Жидкости и газы создают давление во всех направлениях.

Силы, действующие на частицы жидкости или газа, относятся к одному из двух видов.

1) Объемные силы – это силы дальнодействия, которые действуют на каждый элемент объема жидкости или газа. Примером такой силы служит сила тяжести.

2) Поверхностные силы – это силы близкодействия, которые возникают в результате непосредственного контакта между взаимодействующими элементами жидкости, газа и твердого тела на их общей границе. Примером поверхностной силы является сила атмосферного давления.

Закон Паскаля. Поверхностные силы, действующие на неподвижную жидкость (или газ), создают давление, одинаковое во всех точках жидкости (газа). Величина давления в любой точке жидкости (газа) не зависит от направления (т.е. от ориентации элементарной площадки).

Доказательство.

1. Докажем, что давление в данной точке жидкости одинаково по всем направлениям.

Рис. 5.1.1.а Рис. 5.1.1.б

Для доказательства воспользуемся принципом отвердевания : любой элемент жидкости можно рассматривать как твердое тело и применять к этому элементу условия равновесия твердого тела.

Выделим мысленно в окрестности данной точки жидкости бесконечно малый отвердевший объем в виде трехгранной призмы (рис. 5.1.1), одна из граней которой (грань OBCD) расположена горизонтально. Площади оснований AOB и KDC будем считать малыми, по сравнению с площадями боковых граней. Тогда малым будет объем призмы, а, следовательно, и сила тяжести, действующая на эту призму.

На каждую грань призмы действуют поверхностные силы F 1 , F 2 и F 3 . Из равновесия жидкости следует, что , т.е. векторы F 1 , F 2 и F 3 образуют треугольник (на рис. 5.1.1.б), подобный треугольнику . Тогда

.

Умножим знаменатели этих дробей на OD = BC = AK, Þ



, Þ , Þ .

Таким образом, давление в неподвижной жидкости не зависит от ориентации площадки внутри жидкости .

2. Докажем, что давление в двух любых точках жидкости одинаково.

Рассмотрим две произвольные точки A и B жидкости, отстоящие друг от друга на расстояние DL. Выделим в жидкости произвольно ориентированный цилиндр, в центрах оснований которого находятся выбранные нами точки A и B (рис. 5.1.2). Площади оснований цилиндра DS будем считать малыми, тогда объемные силы также будут малыми по сравнению с поверхностными.

Предположим, что давления в точках A и B разные: , тогда , а значит, выделенный объем придет в движение. Полученное противоречие доказывает, что давление в двух любых точках жидкости одинаково .

Примером поверхностных сил, для которых выполняется закон Паскаля, является сила атмосферного давления.

Атмосферное давление – это давление, которое оказывает воздух атмосферы на все тела; оно равно силе тяжести, действующей на столб воздуха с единичной площадью основания.

Опыт Торричелли продемонстрировал наличие атмосферного давления и впервые позволил его измерить. Этот опыт был описан в 1644 году.

Рис. 5.1.3. Рис. 5.1.4.

В этом опыте длинная стеклянная трубка, запаянная с одного конца, наполняется ртутью; затем открытый конец ее зажимается, после чего трубка перевертывается, опускается зажатым концом в сосуд с ртутью и зажим снимается. Ртуть в трубке при этом несколько опускается, т.е. часть ртути выливается в сосуд. Объем пространства над ртутью в трубке называется торричелевой пустотой . (Давление паров ртути в торричелевой пустоте при 0°C составляет 0,025 Па.)

Уровень ртути в трубке одинаков независимо от того, как установлена трубка: вертикально или под углом к горизонту (рис. 5.1.3). При обычных нормальных условиях вертикальная высота ртути в трубке составляет h = 760 мм. Если бы вместо ртути трубка была заполнена водой, то высота h = 10,3 м.

Приборы, применяемые для измерения атмосферного давления, называются барометрами . Простейший ртутный барометр представляет собой трубку Торричелли.

Для того, чтобы объяснить, почему трубка Торричелли действительно позволяет измерить атмосферное давление, обратимся к рассмотрению объемных сил и вычислению зависимости давления в жидкости от глубины h .

Давление в жидкости, создаваемое объемными силами, т.е. силой тяжести, называется гидростатическим давлением .

Получим формулу для давления жидкости на глубине h . Для этого выделим в жидкости затвердевший параллепипед, одно из оснований которого находится на поверхности жидкости, а другое на глубине h (рис. 5.1.4). На этой глубине на параллепипед действуют силы, изображенные на рисунке.

Силы, действующие на параллепипед, вдоль оси x уравновешены. Запишем условие равновесия сил вдоль оси y .

где p 0 – атмосферное давление, - масса параллепипеда, r - плотность жидкости. Тогда

, (5.1.3)

Первое слагаемое в формуле (5.1.3) связано с поверхностными силами, а второе слагаемое , называемое гидростатическим давлением, связано с объемными силами.

Если сосуд с жидкостью движется с ускорением a , направленным вниз, то условие (5.1.2) принимает вид: , Þ

В состоянии невесомости (a = g ) гидростатическое давление равно нулю.

Примеры применения закона Паскаля.

1. Гидравлический пресс (рис. 5.1.5).

.

3. Гидростатический парадокс . (рис. 5.1.8).

Возьмем три сосуда различной формы, но с одинаковой площадью сечения дна. Предположим эта площадь равна S = 20 см 2 = 0,002 м 2 . Уровень воды во всех сосудах одинаков и равен h = 0,1 м. Однако из-за различной формы сосудов в них находится разное количество воды. В частности, в сосуде A налита вода весом 3 Н, в сосуде B – весом 2 Н и в сосуде C – весом 1 Н.

Гидростатическое давление на дно во всех сосудах равно Па. Одинакова и сила давления воды на дно сосудов Н. Как может вода весом 1 Н в третьем сосуде создать силу давления 2 Н?

Если мы положим на стол тяжелую стопку книг, то мы увеличим давление не только на стол, но и соответственно, на пол под столом. Стены, потолок, окна и двери этого давления на себе не почувствуют.

Даже если мы сложим на стол всю одежду из шкафов, еду из холодильника, телевизор, гантели и вдобавок взгромоздимся с ногами сами, стены и потолок не ощутят никаких изменений. Разве что их может задеть щепкой от разлетевшегося под весом всего этого добра стола, но изменения в давлении на них будут равны нулю. С газами и жидкостями дело обстоит иначе. Если в закрытом сосуде мы изменим давление на наполняющую сосуд жидкость или газ, то изменение в давлении ощутят на себе абсолютно все стенки этого сосуда.

В чем состоит закон Паскаля?

Можно самостоятельно проделать опыт, наглядно подтверждающий это явление. Для этого необходимо взять плотный резиновый шарик и наполнить его водой, а потом завязать или закупорить как-то иначе. Аккуратно, чтобы не порвать, проделываем иголкой несколько дырок в разных местах наполненного водой шарика. Сквозь дырки начинает сочиться вода. А теперь, если мы сожмем шар в руках, мы увидим, что вода начинает выливаться гораздо активнее абсолютно через все отверстия. То есть, увеличив давление в местах сжатия, мы видим, что давление увеличилось также одинаково во всех направлениях , на все стенки сосуда, то есть, в данном случае, шарика.

То же самое будет, если наполнить шарик дымом. Это происходит вследствие того, что активно перемещающиеся частицы жидкости и газа перемешиваются по всему объему, и давление, уменьшившее объем для их свободного перемещения в одном месте, вызовет такое же уменьшение объема по всем направлениям. В этом и состоит закон Паскаля: жидкости и газы передают оказываемое на них давление по всем направлениям одинаково. Закон этот был открыт в 17 веке французским ученым Паскалем и потому носит его имя.

Формула закона Паскаля и его применение

Закон Паскаля описывается формулой давления:

где p - это давление,
F - приложенная сила,
S - площадь сосуда.

Из формулы мы видим, что при увеличении силы воздействия при той же площади сосуда давление на его стенки будет увеличиваться. Измеряется давление в ньютонах на метр квадратный или в паскалях (Па), в честь ученого, открывшего закон Паскаля. Его применение лежит в основе многих устройств и довольно распространено в производстве. Это, в частности, гидравлические прессы, пневматические тормоза и инструменты и многое другое.

Знаменитый французский философ, математик и физик XVII века Блез Паскаль внес важный вклад в развитие науки Нового времени. Одним из главных его достижений стала формулировка так называемого закона Паскаля, который связан со свойством текучих субстанций и давлением, создаваемым ими. Рассмотрим подробнее этот закон.

Краткая биография ученого

Блез Паскаль родился 19 июня 1623 года во французском городе Клермон-Ферран. Отец его был вице-президентом по сбору налогов и математиком, а мать принадлежала к буржуазному сословию. С юных лет Паскаль начал проявлять интерес к математике, физике, литературе, языкам и религиозному учению. Он изобрел механический калькулятор, который мог выполнять операции сложения и вычитания. Большое количество времени уделял изучению физических свойств текучих тел, а также разработке концепций давления и вакуума. Одним из важных открытий ученого стал принцип, который носит его имя - закон Паскаля. Умер Блез Паскаль в 1662 году в Париже из-за паралича ног - болезни, которая сопровождала его с 1646 года.

Понятие о давлении

Прежде чем рассматривать закон Паскаля, разберемся с такой физической величиной как давление. Оно является скалярной физической величиной, обозначающей силу, которая действует на данную поверхность. Когда на поверхность площадью A перпендикулярно ей начинает действовать сила F, тогда давление P рассчитывается по следующей формуле: P = F/A. Измеряется давление в Международной системе единиц СИ в паскалях (1 Па = 1 Н/м 2), то есть в честь Блеза Паскаля, который многие свои работы посвятил именно вопросу давления.

Если сила F действует на данную поверхность A не перпендикулярно, а под некоторым углом α к ней, тогда выражение для давления примет вид: P = F*sin(α)/A, в данном случае F*sin(α) - это перпендикулярная составляющая силы F к поверхности A.

Закон Паскаля

В физике этот закон может быть сформулирован следующим образом:

Давление, прикладываемое к практически несжимаемой текучей субстанции, которая находится в равновесном состоянии в сосуде, имеющем недеформируемые стенки, передается во всех направлениях с одинаковой интенсивностью.

Удостовериться в правильности этого закона можно следующим образом: необходимо взять полую сферу, проделать в ней отверстия в различных местах, снабдить эту сферу поршнем и заполнить водой. Теперь, создавая с помощью поршня давление на воду, можно видеть, как из всех отверстий она выливается с одинаковой скоростью, а это означает, что давление воды в области каждого отверстия одинаковое.

Жидкости и газы

Закон Паскаля сформулирован для текучих субстанций. Под эту концепцию попадают жидкости и газы. Однако, в отличие от газов, молекулы, образующие жидкость, расположены близко друг к другу, что обуславливает наличие у жидкостей такого свойства, как несжимаемость.

Благодаря свойству несжимаемости жидкости, когда в некотором ее объеме создается конечное давление, оно передается во все стороны без потери интенсивности. Именно об этом идет речь в принципе Паскаля, который сформулирован не только для текучих, но и для несжимаемых субстанций.

Рассматривая в этом свете вопрос "давление газа и закон Паскаля," следует сказать, что газы, в отличие от жидкостей, легко сжимаются, не сохраняя при этом объем. Это приводит к тому, что при воздействии на некоторый объем газа внешнего давления, оно также передается во все стороны и направления, но при этом теряет интенсивность, причем ее потеря будет тем сильнее, чем меньше плотность газа.

Таким образом, принцип Паскаля справедлив только для жидких сред.

Принцип Паскаля и гидравлическая машина

Принцип Паскаля применяется в различных гидравлических устройствах. Для того чтобы использовать в этих устройствах закон Паскаля, формула справедлива следующая: P = P 0 +ρ*g*h, здесь P - давление, которое действует в жидкости на глубине h, ρ - это плотность жидкости, P 0 - давление, прилагаемое к поверхности жидкости, g (9,81 м/с 2) - ускорения свободного падения вблизи поверхности нашей планеты.

Принцип работы гидравлической машины состоит в следующем: два цилиндра, которые имеют различный диаметр, соединяются между собой. Этот комплексный сосуд заполняется какой-нибудь жидкостью, например, маслом или водой. Каждый цилиндр снабжается поршнем таким образом, чтобы не оставалось воздуха между цилиндром и поверхностью жидкости в сосуде.

Предположим, что на поршень в цилиндре с меньшим сечением воздействует некоторая сила F 1 , тогда она создает давление P 1 = F 1 /A 1 . Согласно закону Паскаля, давление P 1 мгновенно передастся во все точки пространства внутри жидкости в соответствии с приведенной выше формулой. В итоге на поршень с большим сечением также будет действовать давление P 1 с силой F 2 = P 1 *A 2 = F 1* A 2 /A 1 . Сила F 2 будет направлена противоположно силе F 1 , то есть она будет стремиться вытолкнуть поршень вверх, при этом она будет больше силы F 1 ровно во столько раз, во сколько отличается площадь сечения цилиндров машины.

Таким образом, закон Паскаля позволяет поднимать большие грузы с помощью малых уравновешивающих сил, что является своего рода подобием рычага Архимеда.

Другие применения принципа Паскаля

Рассматриваемый закон используется не только в гидравлических машинах, а находит более широкое применение. Приведем ниже примеры систем и приборов, работа которых оказалась бы невозможной, если бы закон Паскаля был не справедлив:

  • В тормозных системах автомобилей и в известной антиблокирующей системе ABS, которая препятствует блокировке колес автомобиля в процессе его торможения, что позволяет избежать заносов и скольжения транспортного средства. Кроме того, система ABS позволяет водителю сохранять контроль в управлении транспортным средством, когда последнее выполняет экстренное торможение.
  • В любом типе холодильников и охлаждающих систем, где рабочим веществом является жидкая субстанция (хладон).