Мoдa

Является ли витамин а антиоксидантом. Биологическая роль антиоксидантов в организме человека, их виды и источники

Антиоксидантами называют соединения, ингибирующие окислительные процессы. К ним относятся продукты жизнедеятельности организма и питательные вещества, поступающие в него извне с пищей. Действие антиоксидантов направлено на защиту и восстановление клеток от повреждений, вызванных свободными радикалами. Чем старше становится человек, тем в большей степени у него снижаются функции собственной антиоксидантной системы и более актуальным становится дополнительный прием этих соединений в виде лекарственных препаратов, БАД или продуктов питания. Антиоксиданты помогают предупредить или снизить скорость прогрессирования таких опасных для жизни человека заболеваний, как рак и атеросклероз сосудов, а также замедляют процессы старения, защищают от неблагоприятного влияния факторов окружающей среды.

Механизм действия свободных радикалов и антиоксидантов

Свободными радикалами называются частицы, имеющие один или несколько неспаренных электронов. Они образуются в организме в результате многочисленных окислительно-восстановительных реакций, направленных на поддержание всех процессов жизнедеятельности и выработку энергии. Свободные радикалы являются химически нестабильными и обладают высокой реакционной способностью. Они с легкостью вступают в реакции, приводящие к потере своего неспаренного электрона или приобретению для него пары. Эти частицы могут обратимо или необратимо изменять структуру находящихся по близости биологически активных молекул (белков, липидов, ферментов, нуклеиновых кислот, углеводов и др.). При многочисленных таких повреждениях в клетке нарушаются ее функции, что приводит к ее гибели и провоцирует развитие различных заболеваний.

Интересно: За один день каждая клетка организма может подвергаться нападению порядка 10 000 свободных радикалов. Их присутствие в организме считается нормальным физиологическим явлением.

Способствовать увеличению концентрации свободных радикалов в организме могут следующие факторы:

  • курение;
  • злоупотребление алкоголем;
  • интоксикация;
  • постоянный прием лекарственных препаратов;
  • радиоактивное и ультрафиолетовое излучение;
  • неправильное питание (злоупотребление фаст-фудом, жареной и жирной пищей);
  • плохая экология.

Очень часто свободный радикал вступает в так называемые цепные реакции. При этом при взаимодействии с соседней молекулой он отбирает у нее один электрон, превращая тем самым уже ее в частицу с неспаренным электроном. Затем этот новый свободный радикал делает то же самое с соседней молекулой. В результате молекулы, превратившиеся в свободные радикалы, теряют свой заряд и способность выполнять определенные биологические функции. Такое состояние называется окислительный стресс. Цепные реакции могут приводить к образованию поперечных сшивок между двумя молекулами. Например, соединять две молекулы ДНК.

Что такое антиоксиданты простыми словами? Это соединения, которые предоставляют свободному радикалу свой электрон, а сами превращаются в малоактивные радикалы, не представляющие угрозы. Таким образом, они нейтрализуют свободные радикалы, останавливают цепную реакцию или значительно замедляют ее без ущерба для организма. В медицинской практике в составе комплексного лечения антиоксиданты применяются при рассеянном склерозе, сахарном диабете, болезни Альцгеймера, атеросклерозе, гипертонии, ишемической болезни сердца, онкологических заболеваниях и других патологиях.

Виды антиоксидантов

Антиоксиданты разделяют на две основные группы: ферментные и неферментные. Ферменты являются частью внутренней антиоксидантной системы организма, благодаря им каждая клетка в состоянии справляться с атакующими ее свободными радикалами. К ним относятся супероксиддисмутаза, каталаза и пероксидазы. Неферментные антиоксиданты относятся к внешней антиоксидантной системе и поступают извне с продуктами питания, биологически активными добавками или витаминными препаратами. К ним относятся витамины (аскорбиновая кислота, токоферол, ретинол, липоевая кислота), каротиноиды (β-каротин, ликопин), полифенолы (флавоноиды, флавин, танины, антоцианы).

В зависимости от способа получения антиоксиданты бывают натуральными и синтетическими. Натуральные поступают в организм с пищей, а синтетические – из лекарственных препаратов и пищевых добавок.

Интересно: Синтетические антиоксиданты используются в пищевой промышленности как консерванты для увеличения сроков хранения продуктов за счет снижения скорости окислительных процессов.

Антиоксиданты в продуктах питания

Основными антиоксидантами, поступающими в организм с продуктами питания, являются каротиноиды, витамины и минералы. Они не только нейтрализуют свободные радикалы, но и проявляют много других полезных биологических свойств.

Витамины

К витаминам-антиоксидантам относятся аскорбиновая кислота, токоферол (Е), ретинол (А). Они встречаются в различных продуктах питания, которые ежедневно употребляет человек. Их суточные нормы составляют:

  • витамин Е – 15 мг;
  • витамин С – 75 – 90 мг;
  • витамин А – 1 – 1.5 мг.

Витамин Е является жирорастворимым соединением, он встраивается в липидный бислой клеточных мембран и препятствует процессу перекисного окисления мембранных фосфолипидов и разрушению любых клеток. Токоферол защищает от окисления образующийся в организме витамин А, лимитирует свободнорадикальные реакции в клетках слизистых оболочек, эпителия и клетках эмбриона, которые отличаются быстрым делением. Он улучшает состояние кожи, препятствует ее старению, повышает защитные силы организма, способствует лучшему усвоению кислорода клетками.

Витамин С является водорастворимым и реализует свое антиоксидантное действие в плазме крови, межклеточной жидкости и внеклеточном пространстве. Его называют еще «ловушкой» свободных радикалов и относят к антиоксидантам немедленного действия. Он стимулирует иммунную систему, повышая синтез интерферона, борется с воспалительными процессами, снижает риск развития сердечно-сосудистых заболеваний, а также стимулирует работу головного мозга и защищает его клетки. Кроме того, аскорбиновая кислота предотвращает окисление и разрушение витаминов А и Е.

Важно: Для курящих людей суточная норма витамина С может быть увеличена почти в 2 раза, так как никотин снижает степень усвоения витамина С и разрушает его.

Витамин А является жирорастворимым, синтезируется в организме из бета-каротина и поступает с продуктами питания. Он уменьшает вредное воздействие на организм радиоактивного и электромагнитного излучения, повышает его стрессоустойчивость. Ретинол укрепляет иммунную систему, оказывает благотворное влияние на кожные покровы и слизистые оболочки, стимулируя их регенерацию, снижает уровень холестерина, повышает остроту зрения.

Минералы

Минералы – важное звено антиоксидантной системы, они усиливают и дополняют действие витаминов, препятствуют развитию раковых заболеваний, повышают иммунитет. Самыми главными из них являются селен, медь, цинк, марганец, и хром. Их суточные нормы составляют:

  • цинк – 8 – 11 мг;
  • селен – 55 мкг;
  • медь – 2.5 мг;
  • хром – 100 – 150 мкг;
  • марганец – 3 – 4 мг.

Большое значение из перечисленных минералов имеет незаменимый микроэлемент селен. Он входит в состав многих гормонов и ферментов. В частности селен является активным центром фермента глутатионпероксидазы, нейтрализующего самые опасные и агрессивные свободные радикалы. Селен поддерживает работу иммунной системы, печени, сердца и легких. Он предохраняет организм от интоксикаций тяжелыми металлами, табачным дымом и выхлопными газами, защищает от воздействия радиации.

Медь и марганец выступают активными центрами антиоксидантного фермента супероксиддисмутазы, катализирующего превращение супероксидного радикала в кислород и пероксид водорода и защищая тем самым от супероксида все клетки, находящиеся в контакте с кислородом. Марганец повышает степень усвоения витаминов-антиоксидантов Е и С, витаминов группы В, усиливает способность клеточных мембран противостоять свободным радикалам.

Микроэлемент цинк оказывает влияние на рост и дифференциацию клеток, участвует в обмене белков, нуклеиновых кислот и транскрипции, способствует восстановлению повреждений в структуре ДНК. Он улучшает всасывание витаминов А и Е, поддерживает их концентрацию в крови, активизирует иммунитет, уменьшает негативное влияние токсических веществ.

Хром участвует в липидном и углеводном обмене, повышает работоспособность, усиливает процессы регенерации, облегчает выведение из организма токсинов, помогает усвоению токоферола.

Каротиноиды

К каротиноидам, обладающими антиоксидантной активностью, относятся β-каротин, ликопин и др. β-Каротин – предшественник витамина А и обладает схожим с ним биологическим действием, однако антиокислительная активность у него выражена в большей степени. Он повышает стрессоустойчивость, помогает скорейшей адаптации в непривычных и сложных условиях, смягчает негативное влияние радиации и химических загрязнений, укрепляет иммунитет.

Ликопин является самым сильным антиоксидантом из группы каротиноидов, снижает окислительный стресс, замедляет развитие атеросклероза и других сердечно-сосудистых заболеваний, предотвращает опухолевые процессы, приостанавливает пролиферацию раковых клеток.

Содержание антиоксидантов в продуктах питания

Антиоксиданты присутствуют преимущественно в зелени, фруктах, ягодах и овощах оранжевого, красного, желтого, фиолетового цветов. Считается, что чем интенсивнее цвет продукта, тем больше их в нем. К продуктам, богатым антиоксидантами, относятся красное вино, какао-порошок, зелёный и чёрный чай.

Содержание природных антиоксидантов в продуктах питания выражается в специальных единицах антиоксидантной способности – ORAC (от англ. Oxygen Radical Absorbance Capacity - в переводе на русский «объем поглощения кислородных радикалов»). Рекомендованная суточная норма поступающих в организм с пищей антиоксидантов для взрослых людей составляет примерно 5000 ORAC. Ниже в таблице приведены значения антиоксидантной способности для некоторых продуктов. В зависимости от места и условий их произрастания они могут немного отличаться в меньшую или большую сторону.

Название продукта

Название продукта

Антиоксидантная способность на 100 г продукта

Чернослив

Черника (дикая)

Земляника

Груша сырая

Крыжовник

Апельсин

Грецкий орех

Виноград красный

Фисташки

Виноград черный

Мандарины

Грейпфрут

Базилик свежий

Абрикосы

Листья салата

Шпинат свежий

Красная фасоль

Розмарин сушеный

Артишок сырой

Брокколи

Базилик сушеный

Баклажаны

Черный перец

Лук репчатый

Перец сладкий

Кукуруза

Помидоры

Имбирь свежий

Как видно из таблицы, антиоксиданты в продуктах питания в больших количествах присутствуют в черносливе, свежих фруктах и ягодах. Из овощей по их содержанию лидируют красная фасоль и артишок. Из ягод тремя самыми сильными природными антиоксидантами являются черноплодная рябина, клюква и дикая черника. Самые высокие показатели антиоксидантной активности у специй, но никто не употребляет их в таких больших количествах, чтобы рассматривать их как источник антиоксидантов. Кроме того, специи противопоказаны при ряде заболеваний почек, ЖКТ, сердца и сосудов.

Препараты антиоксиданты

Недостаток антиоксидантов можно пополнить и принимая специально разработанные с учетом совместимости и синергизма отдельных компонентов комплексы витаминов и БАДы. Особенно актуален их прием для людей, имеющих вредные привычки, страдающих тяжелыми хроническими заболеваниями или проживающих в экологически неблагоприятной обстановке, а также в зимний период во время отсутствия свежих овощей, ягод и фруктов.

В список эффективных препаратов антиоксидантов входят следующие:

  • комплекс Витрум Антиоксидант, содержит витамины А, Е и С, микроэлементы – медь, цинк, марганец и селен;
  • Селен Форте, в состав входят селен и витамин Е;
  • Синергин, содержит витамины С и Е, рутин, ликопин и β-каротин, убихинон, липоевую и янтарную кислоты, оксид магния;
  • Ресверальгин, в составе имеется полифенол ресвератрол, хитозан, кофермент Q10, витамины С и Е, β-каротин, селен, экстракт красного вина и листьев зеленого чая.

Кроме них, выпускается еще ряд препаратов с антиоксидантной активностью. Например, Компливит Селен, Дигидрокверцетин, Мексидол и др.


Антиоксиданты – это соединения, защищающие клетки (а точнее мембраны клеток) от вредных эффектов или реакций, которые могут вызвать избыточное окисление в организме. На нашей планете практически всегда процессы разрушения идут с участием кислорода путем окисления. Ржавеет железо - это окисление, в лесу гниют опавшие листья - это окисление. Мы болеем, постепенно стареем и это, очень приблизительно конечно, можно назвать процессом окисления.

Антиоксиданты – это специфическая группа химических веществ различного химического строения, обладающих одним общим свойством – способностью связывать свободные радикалы (активные формы кислорода) и замедлять окислительно-восстановительные процессы. Исследования показали, что антиоксиданты помогают организму снижать уровень повреждения тканей, ускорять процесс выздоровления и противостоять инфекциям.

Антиоксиданты – это вещества, в большинстве своем витамины, которые очищают организм от повреждающих молекул, называемых свободными радикалами. Эти молекулы (свободные радикалы) постоянно образуются в организме человека в результате многочисленных окислительно-восстановительных процессов, направленных на поддержание нормального функционирования всех органов и систем.

В естественных условиях количество свободных радикалов мало, и их действие на клетки организма полностью подавляется поступлением извне антиоксидантов, при потреблении человеком пищи, содержащей эти вещества.

Роль свободных радикалов в живом организме

Свободный радикал – это атом или группа атомов, имеющих непарный электрон на последнем электронном уровне, который делает их крайне нестабильными. В этом состоянии свободные радикалы ловят уязвимые протеины, ферменты, липиды и даже целые клетки. Отнимая электрон у молекулы, они инактивируют клетки, тем самым, нарушая хрупкий химический баланс организма. Когда процесс происходит снова и снова, начинается цепная реакция свободных радикалов, при этом разрушаются клеточные мембраны, подрываются важные биологические процессы, создаются клетки-мутанты. Свободные радикалы способны обратимо или необратимо разрушить вещества всех биохимических классов, включая и свободные аминокислоты, липиды, углеводы и молекулы соединительных тканей.

За последние несколько лет было доказано, что антиоксиданты крайне полезны для организма – они предотвращают развитие сердечнососудистых заболеваний, защищают от рака и преждевременного старения, также повышают иммунитет и многое другое. Последнее десятилетие дало множество свидетельств, доказывающих, что свободные радикалы играют определенную роль в развитии многих заболеваний. Если свободные радикалы окисляют липиды, происходит образование опасной формы липидного пероксида. Многие ученые связывают образование липидных пероксидов с раком, болезнями сердца, ускоренным старением и иммунным дефицитом.

Ларс Эрнстер (швецкий биохимик) считает, что свободные радикалы играют важную роль в усилении разрушения тканей при язвах, вызванных стрессом, артрите, воспалительном процессе в желудочно-кишечном тракте, сердечнососудистом кризе.

Кроме радиации образованию свободных радикалов способствует неправильное питание. Предотвратить образование свободных радикалов путем объединения свободных электронов в пары может добавление в питание антиоксидантов.

Антиоксиданты действуют как ловушки для свободных радикалов. Отдавая электрон свободному радикалу, антиоксиданты останавливают цепную реакцию. Правильная регуляция этого баланса помогает организму расти, вырабатывать энергию.

В результате исследований доказано, что они могут увеличить продолжительность жизни человека. Многие из причин формирования антиоксидантов неустранимы. Даже самый здоровый человек время от времени заболевает гриппом или простудой.

С 1925 года ученые связывают низкое потребление антиоксидантов с раком легких, желудка, груди, мочевого пузыря и шейки матки. Цинк участвует в росте новых клеток, включая производство и восстановление ДНК и РНК. Большие дозы цинка способствуют заживлению ран и стимулируют иммунную систему. Установлено, что добавки с цинком сокращают восстановительный период на 40%. Выздоровление пациентов с язвой желудка, принимавших цинк, заняло одну треть времени в сравнении с теми, кто не получал цинк. Кофермент Q10 играет ключевую роль в генерации клеточной энергии, является важным иммунологическим стимулятором, усиливающим циркуляцию, противодействует старению, полезен для поддержания нормального состояния сердечнососудистой системы. Прием антиоксидантных витаминов C и E замедляет раннюю прогрессию атеросклероза трансплантированного сердца.

Множество болезненных состояний (хронические заболевания, стресс, действие радиации, процесс старения и другие) протекают в организме с образованием свободных радикалов (продуктов неполного восстановления кислорода). Их избыток ведет к окислению липидов - основы клеточных мембран - и, в результате, к нарушению функций мембран клеток нашего организма, к нарушению здоровья и преждевременному старению.

Разнообразное влияние окружающей среды, такое как радиация, загрязненный воздух, сигаретный дым, алкоголь, некоторые лекарственные препараты, диета и длительное пребывание на солнце могут способствовать увеличенному образованию свободных радикалов в организме. Чрезмерные психические, физические нагрузки и стресс также влияют на образование свободных радикалов.

Свободные радикалы оказывают пагубное воздействие на здоровье, в том случае, если в организме образуется их избыточное количество. Собственные защитные системы организма не могут более поддерживать баланс свободных радикалов, что приводит к поражению клетки, к развитию различных заболеваний сердечнососудистой системы, снижению сопротивляемости организма, нарушениям в иммунной системе, образованию катаракты, ускорению процесса старения и возрастанию вероятности развития онкологических заболеваний.

Перекисное окисление липидов

Для живых клеток наибольшую опасность представляет цепное окисление полиненасыщенных жирных кислот, или перекисное окисление липидов (ПОЛ). В реакциях перекисного окисления липидов образуется большое количество гидроперекисей, которые обладают высокой реакционной способностью и оказывают мощное повреждающее действие на клетку. В последнее время свободные радикалы и реакции с их участием считаются причиной возникновения многих заболеваний у животных.

Таким образом, перекисное окисление липидов (ПОЛ) - это окислительная деградация липидов, происходящая, в основном, под действием свободных радикалов. Является одним из главных последствий облучения.

В нормальных условиях активность этих процессов находится на невысоком уровне, обеспечивающем протекание ряда физиологических процессов. Чрезмерная, патологически усиленная активация процессов ПОЛ приводит к необратимому изменению или повреждению мембранных структур, нарушению их проницаемости для ионов, и изменяет коллоидное состояние протоплазмы.

Ведущую роль в запуске перекисного окисления липидов играют первичные свободные радикалы (кислород и его активированные формы). При перекисном окислении липидов окислительным превращениям подвергаются полиненасыщенные жирнокислотные фосфолипиды, нейтральные жиры и холестерин, которые являются основными компонентами клеточных мембран. Поэтому при стимуляции перекисного окисления липидов в мембранах уменьшается содержание липидов, а также меняются их микровязкость и электростатический заряд. При более глубоком окислении фосфолипидов нарушается структура липидного бислоя, и появляются дефектные зоны в мембранах клеток, а это нарушает функциональную активность.

Механизм действия антиоксидантов

Антиоксиданты (антиокислители) - ингибиторы окисления, природные или синтетические вещества, способные тормозить окисление (рассматриваются преимущественно в контексте окисления органических соединений).

Антиоксидантная защита делится на систему первичной и вторичной защиты. Антиоксиданты действуют так, чтобы прекратился процесс неуправляемых цепных реакций образования свободных радикалов, процесс окисления липидов мембран клеток.

Механизм действия наиболее распространенных антиоксидантов (ароматические амины, фенолы, нафтолы и др.) состоит в обрыве реакционных цепей: молекулы антиоксиданта взаимодействуют с активными радикалами с образованием малоактивных радикалов.

Окисление замедляется также в присутствии веществ, разрушающих гидроперекиси (диалкилсульфиды и др.). В этом случае падает скорость образования свободных радикалов. Даже в небольшом количестве (0,01-0,001 %) антиоксиданты уменьшают скорость окисления, поэтому в течение некоторого периода времени (период торможения, индукции) продукты окисления не обнаруживаются. В практике торможения окислительных процессов большое значение имеет явление синергизма - взаимного усиления эффективности антиоксидантов в смеси, либо в присутствии других веществ.

По природе происхождения антиоксиданты можно разделить на две группы:

1) первая группа антиоксидантов - ферментативные антиоксиданты. Они составляют внутриклеточные системы: супероксиддисмугаза работает в цитоплазме клеток, в митохондриях, плазме; каталаза - в цитоплазме, митохондриях; глютатионпероксидаза - в митохондриях.

2) вторую группу антиоксидантов составляют антиоксидантные витамины: водорастворимые витамины (С, рутин, аскорутин); жирорастворимые витамины (А, Р-каротин, Е, К); другие соединения - серосодержащие аминокислоты, глютатион, цистеин, метионин, цитохром С, пировиноградная кислота, хелаты, минерал селен. Определенное значение имеют медь, цинк, марганец и железо.

Антиоксиданты-ферменты переводят в биологических реакциях активные формы кислорода в перекись водорода и менее агрессивные радикалы, а затем уже их преобразуют в воду и обычный полезный кислород.

Антиоксиданты-витамины “душат” агрессивные радикалы, забирают избыток энергии, тормозят процесс цепной реакции образования новых радикалов, причем лучше они проявляют себя, если применяются совместно, поддерживая друг друга (например, витамин Е с витамином С действует активнее).

Антиоксиданты могут расщеплять поврежденные участки, заменяя старые элементы новыми. Эти “ремонтники” расщепляют белки-протеазы, жиры-фосфатазы и ферменты ремонта ДНК.

Большинство антиоксидантов организм вырабатывает сам, но не менее важны и антиоксиданты, поступающие с пищей. Они должны поступать в достаточном для человеческого организма количествах, поскольку они замедляют процессы старения клеток. Источниками антиоксидантов служат шпинат, черника, морковь и цитрусовые, а также черный и зеленый чаи, какао, красное вино, розмарин. Однако в современных условиях получить все необходимые антиоксиданты в достаточном количестве из продуктов достаточно затруднительно, поэтому врачи советуют употреблять биологически активные добавки и поливитамины, в которых присутствуют антиоксиданты и розмарин

Синергизм антиоксидантов

Антиоксиданты, как правило, оказывают положительный эффект в больших дозах. С другой стороны, известно, что большинство соединений данной группы характеризуется двухфазным действием, т.е. антиоксидантный эффект при превышении некоторой пороговой величины сменяется прооксидантным.

Необходимость использования больших концентраций антиоксидантов объясняется тем, что молекула антиоксиданта разрушается при реакции со свободными радикалами и выбывает из игры.

Для того чтобы антиоксидант эффективно работал, необходимо присутствие восстановителей, которые будут переводить его в активное состояние. Например, витамин С восстанавливает витамин Е, но сам при этом окисляется. Тиоловые соединения (содержащие серу) восстанавливают витамин С, а биофлавоноиды восстанавливают как витамин Е, так и витамин С. Такой же синергизм наблюдается между витамином Е и каротиноидами, а также между витамином Е и селеном. Полагают, что альфа-токоферол предохраняет от окисления селенсодержащие и негемовые железопротеиды и поэтому необходим для поддержания биологической формы селена в активном состоянии. В свою очередь, селен снижает потребность в токофероле и сохраняет его уровень в крови.

Таким образом, функциональный синергизм антиоксидантов позволяет добиваться максимального защитного эффекта и высокой стабильности препарата при меньшей концентрации антиоксидантов. В настоящее время ведутся интенсивные исследования по изучению взаимодействия различных антиоксидантов в организме, которые позволят создавать оптимальные антиоксидантные композиции. Можно прогнозировать, что человек, решая проблему антиоксидантов, по-видимому, не сможет изобрести ничего нового и вынужден будет признать, что уникальные композиции, созданные природой, не нуждаются в усовершенствовании. Поэтому мы в первую очередь остановимся на свойствах природных антиоксидантов.

Природные антиоксиданты

Антиоксиданты - большая группа биологически активных соединений, широко распространенных в природе. Спектр биологического действия антиоксидантов весьма разнообразен и обусловлен, в основном, их защитными функциями, выраженными в способности нейтрализовать негативное действие свободных радикалов. К числу наиболее известных антиоксидантов относятся токоферолы (витамин Е), каротиноиды (витамин А), аскорбиновая кислота (витамин С), рутин (витамин P) и антоцианы.

Физиологическое действие каротиноидов

Мы каждый день замечаем каротиноиды по ярко-красной окраске многих растительных продуктов. Это жирорастворимые фотоэлементы, первоначально используемые как красители, теперь известны как питательные вещества - провитамины ретинола и антиоксиданты. Главные каротиноиды это бета-каротин, альфа-каротин, лютеин, зеаксантин и ликопин.

Каротиноиды действуют как антиоксиданты, снижая ущерб, наносимый свободными радикалами. Ущерб от окисления, который наносят свободные радикалы, связывают с наступлением преждевременного старения, возрастным появлением пятен на роговице и другими явлениями.

Каротин в животном организме расщепляется с образованием витамина А. В соответствии с этим и оказываемое каротинолом физиологическое действие, в основном, такое же, как и действие витамина А.

Авитаминозы и гиповитаминозы этого витамина чрезвычайно разнообразны. Они выражаются в задержке развития и роста организма, падение в весе, поражении кожных покровов и слизистых оболочек, и в связанном с этим понижением сопротивляемости инфекционным заболеваниям.

Как уже было упомянуто выше, каротин - предшественник витамина А. Поступая с кормом в организм животных, он превращается в витамин А и участвует в многообразных обменных процессах. Основные источники каротина для животных - зеленый корм силос, сенаж, сено, травяная мука и резка, из корнеплодов и бахчевых культур - морковь и желтые сорта тыквы.

Полноценность А-витаминного питания животных зависит от поступления каротина и витамина с кормами, а также от эффективности их усвоения, наличия и величины тканевых запасов. На доступность и усвоение каротина и витамина А из рационов влияют вид, возраст и физиологическое состояние животных, уровень белкового, углеводного, липидного, витаминного питания, обеспеченность фосфором, йодом, кобальтом и др. Снижение усвояемости и резервирования витамина А наблюдается при избытке и недостатке в рационе протеина, недостатке жира, минеральных веществ (фосфора, йода, марганца, кобальта и др.), витаминов Е, D, В4 и В12, при повышенном содержании в рационах нитратов.

Для животных всех видов имеет значение качество протеина, содержание в нем незаменимых аминокислот (метионина, лизина, триптофана и др.), у свиней и птицы, кроме того, количество и качество кормового жира, особенно содержание в нем ненасыщенных жирных кислот. Окисленные жиры комбикормов, кормовой и рыбий жиры с высоким кислотным (жир более 25 мг КОН, комбикорм и зерно более 5°) и перекисным числом (0,06 и более 0,10 г % йода) разрушают каротиноиды и витамин А в кишечнике птицы, приводят к дистрофическим изменениям в печени, эрозиям и язвам мышечного желудка. При этом наблюдается уменьшение запасов витамина А и каротина в печени.

Для предупреждения А-авитаминоза в рацион птицы при комбинированном типе кормления вводят траву, морковь, травяную муку, проращенное зерно, рыбий жир, зерно желтой кукурузы, комбинированный силос, а при сухом типе кормления - препараты витамина А (микровит А, концентрат витамина А в масле и др.) и травяную муку. Нормы обогащения рациона птицы стабилизированным витамином А в расчете, на 100 г сухого корма колеблются от 1000 (племенные куры и цыплята, гуси, утки, гусята, утята) до 700 ИЕ (несушки и ремонтный молодняк). Племенные индейки и индюшата более требовательны к витамину А, поэтому норма его добавок в полнорационные комбикорма увеличена на 1500 ИЕ на 100 г корма.

Для контроля за обеспеченностью животных витамином А следует определять содержание каротина в натуральных кормах; содержание витамина А в препаратах и комбикормах, обогащенных этим витамином. Для большего представления о степени обеспеченности животных витамином А необходимо исследовать на его содержание молоко, молозиво, сыворотку крови, печень и желток яиц, так как использование каротина кормов отдельными животными колеблется в широких пределах.

Физиологическое действие аскорбиновой кислоты

Витамин С или аскорбиновая кислота - самое известное из жизненно необходимых питательных веществ, классифицируемых как витамины, ассоциируемых у широкой публики с профилактикой и лечением общих простудных заболеваний и симптомов гриппа. Витамин C обеспечивает реагирование иммунной системы в борьбе с бактериями и вирусами.

Аскорбиновая кислота участвует во всех процессах обмена веществ, в особенности в обмене углеводов и белков. Витамин C положительно влияет на функции печени, повышает прочность кровеносных сосудов, тормозит отложение жировых веществ в них, что предотвращает развитие атеросклероза, укрепляет иммунную систему, снижает вредное воздействие некоторых лекарственных веществ и ядов.

Аскорбиновая кислота играет жизненно важную роль в образовании коллагена. Без витамина C в организме по самым разным причинам образование коллагена прерывается. Коллаген это клейкое вещество, которое "сцепляет" все тело воедино. Это ткань, прикрепляющая мышцы к скелету, кожу к мышцам и удерживающая все эти органы вместе. Коллаген обладает высокой степенью растяжимости и представляет собой жесткий волокнистый белок, который образует основную часть соединительной ткани, включая кости, зубы, хрящи, сухожилия, связки, кожу и кровеносные сосуды.

Сама структура организма зависит от коллагена, его целостности, что в свою очередь, зависит от аскорбиновой кислоты (наряду с другими факторами).

Витамин C помогает иммунной системе в осуществлении двух его основных функций - стимулировании выработки белых кровяных телец, которые отражают атаки свободных радикалов, а также ускоренной выработки антител (органических белков которые производят клетки, отреагировавшие на попадание инфекции).

При недостаточном количестве аскорбиновой кислоты у человека нарушается нормальная жизнедеятельность всего организма. А при длительном его отсутствии развивается тяжелое заболевание десен - цинга, при котором десны набухают, зубы расшатываются и выпадают.

Общеизвестно, что витамин C - один из основных элементов нашей антиоксидантной системы, является мощным восстановителем, делает свободные радикалы безвредными.

Также, наряду с витамином E (токоферолом) и витамином A (каротином), витамин C обеспечивает антиоксидантную защиту глаз, снижает внутриглазное давление, уменьшая риск развития катаракты.

В птицеводстве - способствует повышению продуктивности и сохранности цыплят бройлеров, увеличению гемоглобина и бактерицидной активности сыворотки крови.

Физиологическое действие рутина

Рутин относится к биофлавоноидам (витамин Р). Активное вещество 3-Рутинозид кверцетина или 3-рамноглюкозил-3,5,7,3.,4.-пента-оксифлавон. Рутин содержится в листьях руты пахучей и в других растениях, но для медицинских целей добывается из зеленой массы гречихи и почек цветов софоры японской семейства бобовых. Представляет собой зеленовато-желтый мелкокристаллический порошок без вкуса и запаха, практически нерастворимый в воде. Однако, возможно растворение рутина только разбавленными растворами едких щелочей.

Рутин, попадая в организм, действует как противоязвенное, гипоазотемическое, противовоспалительное, антиаллергическое, противоопухолевое, радиопротекторное, желчегонное средство, а также является корректором микроциркуляции крови и лимфы. Благодаря ему капилляры сохраняют эластичность и проходимость для биологических жидкостей. При дефиците рутина микрососуды становятся хрупкими, что внешне может проявляться в виде кровоизлияний или геморрагических диатезах.

Рутин необходим для поддержания здоровья, а особенно при ревматизме, септическом эндокардите, лучевой болезни, кори, скарлатине, аллергических реакциях, варикозном расширении вен, поверхностном тромбофлебите, посттромбическом синдроме, хронической венозной недостаточности (боль, отечность, трофические нарушения, язвы), лимфостазе, геморрое, а также ретинопатии - изменения в сетчатке глаза, чаще проявляющееся в пожилом возрасте и у лиц страдающих гипертонией, атеросклерозом, сахарным диабетом.

Pутин нормализует и поддерживает структуру, эластичность, функцию и проницаемость кровеносных сосудов, предупреждает их склеротическое поражение, способствует поддержанию нормального давления крови и расширению сосудов, оказывает противоотечное и мягкое спазмолитическое действие, тормозит агрегацию и увеличивает степень деформации эритроцитов. Выводится в виде метаболитов и в неизмененной форме, главным образом с желчью, в меньшей степени - с мочой.

Работами зарубежных и отечественных исследователей, на примерах изучения действия рутина при различных заболеваниях, установлено, что он обладает сахароснижающим действием, увеличивает плотность костной ткани (при остеопорозе), обладает антиатеросклеротической активностью, причем у женщин ярче выражено это явление, чем у мужчин, проявляет противоопухолевую активность, угнетает раковые клетки. Экспериментально доказано, что количество потребления рутина находится в обратной пропорции с заболеваемостью ишемической болезнью сердца, раком и аденомы простаты. Рутин моделирует иммунитет при высокой концентрации загрязнения атмосферы.

Ученые биологического факультета Белорусского госуниверситета обнаружили, что биофлавоноиды, к которым относится и рутин, с ионами меди образуют медь-рутиновый комплекс, который в значительной степени обладает антиоксидантными свойствами, по сравнению с обычным рутином. Комплекс оптимизирует деятельность клеток головного мозга и может быть эффективен при некоторых заболеваниях центральной нервной системы (неврозы, эпилепсии, болезнь Альцгеймера). Медь-рутиновый комплекс может быть получен во время заваривания чая в медном чайнике, при этом поместив во внутрь ионатор. Полученное соединение - рутинат меди сохраняет свои ценные качества только в горячем напитке.

Капилляроукрепляющие свойства биофлавоноидов чая считаются полезными при лечении таких заболеваний, как хронический гепатит, ревматический эндокардит, нефрит, а также некоторых форм дерматитов. Рутин снижает активность альдолазы, трансминазы, С-реактивного белка, что облегчает состояние больных хроническим гепатитом. Рутин увеличивает активность адреналина и снижает активность щитовидной железы.

Свойства рутина усиливаются в присутствии витамина С. Кроме того, рутин сам защищает витамин С от ионов тяжелых металлов. Витамин Р, к которому относится и рутин, и витамин С - спутники, так как обычно присутствуют одновременно в растительном сырье..

Антоцианы

Антоцианы (от греч. ἄνθος - цветок и κυανός - синий, лазоревый) - окрашенные растительные гликозиды, содержащие в качестве агликона антоцианидины - замещенные 2-фенилхромены, относятся к флавоноидам. Будучи пирилиевыми солями, антоцианы легко растворимы в воде и полярных растворителях, малорастворимы в спирте и нерастворимы в неполярных растворителях..

Из всех флавоноидов именно антоцианы вносят наибольший вклад в формирование окраски растений. Эти соединения ярко окрашены в оранжевый, красный, пурпурный или синий цвет и обусловливают окраску почти всех красно-синих цветков.

Антоцианы часто образуются в большом количестве в молодых побегах и листьях, которые поэтому приобретают красную окраску в отличие от зеленой у зрелых листьев. Общеизвестным примером служит темно-красная окраска стеблей и листьев у первых весенних побегов розы. В некоторых случаях красный антоциан сохраняется до зрелости, обусловливая красную окраску листвы некоторых декоративных видов.

Окраска, обусловленная антоцианами, особенно цветков и плодов, может зависеть от таких факторов, как рН, образование хелатных комплексов с металлами и копигментация. Антоцианы способны образовывать хелатные комплексы с ионами металлов, и происходит сдвиг в длинноволновую сторону, то есть их синяя окраска становится более темной.

Будучи бесцветными или почти бесцветными, гидроксифлаваны, флавоны и флавонолы вносят важный вклад в окраску многих цветков путем копигментации. Эти соединения часто присутствуют в цветках вместе с антоцианами и образуют с ними комплексы, которые поглощают свет более интенсивно и при больших длинах волн, чем одни только антоцианы.

На биосинтез флавоноидов и его регуляцию оказывают влияние многие внутренние факторы и факторы окружающей среды. К наиболее важным из них относятся свет и стрессовые условия, такие, как ранение или инфекция. Наиболее широко исследовалось влияние света. Обычно свет стимулирует синтез флавоноидов, особенно антоцианов, влияя главным образом на активность участвующих в этом процессе ферментов. Синтез ферментов начинается после индукции светом.

Синтез флавоноидов в зеленых растениях часто усиливается после механических повреждений или заражения патогенными организмами.

Избыточное образование зараженными тканями антоцианов легко заметно, например в случае поражения грибом листьев персика и миндаля, которое выражается в курчавости листьев. Пораженные листья приобретают вид ярких оранжево-красных стручков или плодов. Другой пример - яблоки. Незрелые плоды, пораженные личинками насекомых, обычно синтезируют повышенное количество антоцианов и преждевременно выглядят почти зрелыми. По этому признаку их можно легко отличить на дереве от здоровых плодов.

Главная функция флавоноидов в растениях состоит в пигментации тканей, в которых они синтезируются и накапливаются. Не исключено, что по крайней мере некоторые флавоноиды могут выполнять другие важные функции. Сильное поглощение флавонами, флавонолами и антоцианами света в УФ-диапазоне позволило предположить, что они могут защищать ткани от вредного действия УФ-излучения.

Отмечены также и другие формы защитного действия флавоноидов. Было высказано мнение, например, что флавоноиды, содержащиеся в листьях, могут отпугивать насекомых и таким образом в течение долгого времени предохранять растение от повреждений. Вместе с другими растительными фенолами флавоноиды также, по-видимому, участвуют в формировании устойчивости растений к болезням или инфекции.

К наиболее распространенным антоцианам относится цианидин. Многие популярные книги неточно указывают на то, что цвет осенних листьев (включая красный цвет) - просто результат разрушения зелёного хлорофилла, который маскировал уже имевшиеся жёлтые, оранжевые и красные пигменты (каротиноид, ксантофилл и антоциан, соответственно). И если для каротиноидов и ксантофиллов это действительно так, то антоцианы не присутствуют в листьях до тех пор, пока в листьях не начнёт снижаться уровень хлорофиллов. Именно тогда растения начинают синтезировать антоцианы, вероятно для фотозащиты в процессе перемещения азота.

Антоцианы рассматривают как вторичные метаболиты. Они разрешены в качестве пищевых добавок (E163).

Богатые антоцианами ягоды: черника, голубика, клюква, малина, ежевика, брусника, земляника, чёрная смородина, вишня, черешня, виноград, боярышник, слива. Овощи: баклажаны, красная капуста, столовая свекла. В медицине широко применяются антоцианы черники (в составе экстракта черники).

Водорастворимые и жирорастворимые антиоксиданты

Кровь, плазма крови имеет водную основу, значит, для защиты крови нужны водорастворимые антиоксиданты. Они нейтрализуют водорастворимые свободные радикалы, которые могут попасть в кровь из желудочно-кишечного тракта, печени, почек, а также образовываться в самой крови, так как кровь является транспортной системой для многих белоксодержащих соединений. Таким образом, водорастворимые антиоксиданты поддерживают реологические свойства и чистоту крови.

К водорастворимым антиоксидантам относятся витамин С, витамины группы В, флавоноиды, катехины, полифенолы, ароматические амины. В растительном мире они содержатся в плодах, овощах, растениях, как правило, комплексно и в соединении с макро-, микроэлементами. Водорастворимые антиоксиданты в организме не накапливаются и восполнять их качественно и количественно нужно ежедневно. Витамин С (аскорбиновая кислота), как антиоксидант, сначала окисляется до дегидроаскорбиновой кислоты, которая растворима в жирах и там продолжает выполнять роль антиоксиданта. Другие, менее активные водорастворимые антиоксиданты, способны восстанавливать жирорастворимую форму витамина С до водорастворимой. При этом витамин С работает, как челнок и его действие в организме пролонгированное. Если витаминов группы В и других водорастворимых антиоксидантов недостаточно, тогда жирорастворимая форма витамина С будет окисляться дольше. И в организме возникнет дефицит водорастворимых антиоксидантов, даже при условии, что человек употребляет большое количество продуктов или добавок с натуральным витамином С. Искусственный витамин С вообще принимать не рекомендуется.

Кровь насыщена кислородом. И кровь переносит большое количество различных жиров, которые имеют свойство легко окисляться. Поэтому в крови может образовываться большое количество, в разной степени недоокисленных жирных радикалов. Причем, самые опасные дважды и трижды переокисленные жирные радикалы, приводят к возникновению тяжелых сосудистых поражений, поражению печени, дезактивации цитохрома, инфаркту, инсульту, сахарному диабету. Кроме этого, все клетки организма имеют в составе клеточных мембран фосфолипиды, холестерин и другие ненасыщенные жиры, проявляющие активное свойство окисляться.

Для защиты полезных жиров от окисления необходимы жирорастворимые антиоксиданты. К ним относятся витамин Е (в форме токоферола и группы токотриенолов), кофермент Q10, витамин А (ретинол), группа каротиноидов, витамины К, Д. Они также, как и водорастворимые антиоксиданты, отдают электрон свободному жирному радикалу, превращаясь в менее вредный для организма свободный радикал. Поэтому они называются цепипрерывающими, т.е. останавливающими неконтролируемый процесс образования свободных радикалов. Организм синтезирует жирорастворимые антиоксиданты (в основном в печени) в количестве необходимом для метаболизма. И в организме существуют системы их регенерации, то есть восстановления активности.

Так, витамин Е и кофермент Q10 синтезируются и работают вместе.

Q10 восстанавливает окисленные молекулы витамина Е, а сам восстанавливается специальной ферментативной системой. Менее Активные антиоксиданты восстанавливают активность окисленных сильных антиоксидантов, поэтому для каждого из них в организме определена своя область приложения и они нужны организму в комплексе. Неправильно было бы отдавать предпочтение какому-то одному витамину. У жирорастворимых витаминов необыкновенно широкий спектр функциональных свойств.

Ретинол и каротиноиды выполняют свою защитную функцию в местах удаленных от кровяного русла, где концентрация кислорода невелика. Токоферолы и токотриенолы защищают липиды в токе крови, где большая концентрация кислорода. И оба витамина активно работают на клеточном уровне. Даже небольшой дефицит витаминов Е, А и С приводит к ломкости кровеносных сосудов, повышает проницаемость сосудистой стенки сосудов для ряда веществ, растворенных в крови. Витамин Е активизирует эндокринную систему в целом, улучшает состояние иммунной системы, повышает сопротивляемость к инфекционным заболеваниям. Витамин А сильнейший стимулятор иммунной системы, защищает все слизистые оболочки от инфекции, формирует эпителиальную ткань



Относится к незаменимым витаминам, так как он не может самостоятельно образовываться в организме, а поэтому должен обязательно поступать в организм из вне вместе с пищей или поливитаминными препаратами .

Витамин Е объединяет в себя несколько близких соединений, имеющих схожие химические и структурные формулы и обладающие одинаковыми функциями.

Наиболее известен α-токоферол , но в витаминно-минеральных комплексах можно встретить и другие вещества семейства токоферолов: токоферилацетат, токоферола сукцинат, бета-, гамма-, дельта-токоферолы и другие.

Наиболее предпочтителен натуральный α-токоферол, он действует эффективнее своих синтетических собратьев. Он лучше усваивается и активнее влияет на работу иммунной системы. Однако, ученые в последних исследованиях сделали выводы о том, что синтетический витамин Е обладает наиболее выраженными противораковыми свойствами. К такому веществу относится токоферола сукцинат .

К натуральным источникам витамина Е можно отнести разнообразные пищевые продукты: животного и растительного происхождения.

Среди растений можно выделить некоторые, особенно богатые этим витамином: растительные масла (арахисовое, оливковое и соевое), шпинат и зеленые листовые травы, облепиха, орехи (семечки подсолнечника, грецкие орехи, миндаль и другие).

Из продуктов животного происхождения витамин Е содержится в печени крупного рогатого скота и птицы, яйцах, сливочном масле, сметане.

Витамин Е относится к жирорастворимым витаминам, а поэтому хорошо усваивается вместе с продуктами, содержащими жиры и масла. Этот витамин чаще всего выпускается в капсулах как самостоятельный препарат или может идти вместе с другими витаминами (например с витамином А в капсулах — Аевит) в составе поливитаминного средства (в таблетках). При чем в капсулах производят жирорастворимый витамин Е, а в таблетках используют водорастворимые (мицеллизированные) формы. Это позволяет принимать витамин Е независимо от жирной пищи.

Особенно часто можно встретить : витамин А, Е, С, цинк. Эта комбинация во многом повышает эффективность витамина Е, что делает его более активным в защите клеток от разрушения радикалами и окисления канцерогенными веществами.

Очень часто витамин Е добавляют в разнообразные продукты питания для предохранения их от процессов окисления – в льняное масло, рыбий жир , растительное, миндальное и другие масла. В современной косметической промышленности витамин Е стал незаменимым ингредиентом, который присутствует в различных тониках, кремах и лосьонов для тела. Витамин Е, в отличие от витамина А, хорошо переносит комнатную температуру и имеет более длительные сроки хранения. Кроме того, витамин Е способствует депонированию витамина А в печени.

Биологическое значение витамина Е трудно переоценить. Он участвует в многочисленных биохимических реакциях, протекающих в организме человека, в процессах образования мужских и женский половых гормонов, является активнейшим антиоксидантом, предохраняющим клетки от разрушения свободными радикалами. Витамин Е необходим для нормального заживления тканей, для восстановления клеточных мембран. Он предохраняет организм от преждевременного старения и продлевает молодость кожи, уменьшает размеры послеоперационных рубцов, стимулирует образование эритроцитов, уменьшает повышенную свертываемость крови, способствует нормализации артериального давления.

Витамин Е обладает способностью снижать проявления фиброзно-кистозной мастопатии, предупреждает катаракту, уменьшает риск летального исхода после первого инфаркта, повышает силу и выносливость мышц, способствует снижению сердечно-сосудистых заболеваний, это еще далеко не все из известных функций витамина Е в организме.

К основным симптомам гиповитаминоза относится повышенная сухость кожи, волос, ломкость ногтей, слабая выраженность вторичных половых признаков, скудные месячные и многие другие.

Недостаток витамина Е может проявиться в появлении старческих пятен желто-коричневого цвета, вследствие накопления пигмента – липофусцина. Причем эти пятна могут появиться не только на коже, но и на поверхности внутренних органов. Кроме этого могут возникнуть нервно-мышечные расстройства, сокращение жизни красных кровяных телец, склеротические изменения на сосудах.

Суточная потребность в витамине Е зависит от возраста человека и измеряется в МЕ или мг. Для взрослого человека она может составлять до 30 МЕ или 15 – 20 мг в сутки, для грудных детей – 3 – 4 МЕ, для дошкольников 6 – 7 МЕ, для школьников 7 – 8 МЕ, потребность в витамине Е повышается в подростковом возрасте (особенно в период полового созревания, так как этот витамин влияет на формирование вторичных половых признаков), а так же во время беременности. Для беременных и кормящих женщин потребность в витамине Е составляет 10 – 15 МЕ. Дозировки в 400 — 1200 МЕ считаются безопасными, но они могут назначаться только врачом, под постоянным наблюдением.

Дополнительный прием витамина Е необходим также курильщикам, спортсменам (так как при аэробных нагрузках возрастает потребность в антиоксидантах, защищающих от свободных радикалов).

Основным противопоказанием к приему витамина Е может стать любая планируемая хирургическая операция, так как это соединение способно разжижать кровь.

Биологически активные вещества выполняют в организме определенную функцию, принимая участие в сложных биохимических процессах. Как известно, ультрафиолетовое облучение, курение, стрессы, некоторые препараты (в том числе и лекарственные) способны стимулировать образование свободных радикалов и активных форм кислорода.

Кислород необходим для жизни. Снижение содержания кислорода пагубно влияет на состояние живых организмов. Но, с другой стороны, окислительная способность кислорода повреждающе действует на клеточные структуры.

Свободные радикалы кислорода появляются не только под влиянием агрессивного воздействия внешних факторов, но и могут возникать как побочные продукты биологического окисления в тканях и клетках. Свободные радикалы способны провоцировать развитие различных реакций. Самой нежелательной является реакция взаимодействия с липидами — перекисное окисление их. В результате образуются перекиси. По этому механизму чаще окисляются ненасыщенные жирные кислоты — составляющие клеточных мембран. Перекисное окисление может иметь место в маслах, содержащих ненасыщенные жирные кислоты. Масло приобретает горький вкус — «прогоркает».

Окисление в тканях и клетках носит цепной характер и нарастает лавинообразно. В результате дополнительно к свободным радикалам образуются липидные перекиси, легко превращающиеся в новые свободные радикалы, реагирующие со всеми биологическими молекулами (липидными, белковыми, ДНК).

Антиоксидантная защита кожи способна блокировать реакции свободнорадикального окисления. Антиоксиданты взаимодействуют комплексно. Часть антиоксидантов расположены в органеллах клеток, другие — внеклеточно (в межклеточном пространстве). Например, СОД, каталаза, глутатионпероксидаза находятся как в цитоплазме, так и в митохондриях тех клеточных органелл, где больше всего свободных радикалов. В дополнение к внутриклеточным антиоксидантную защиту осуществляют внеклеточные антиоксиданты — глутанион, витамины Е, С, А, СОД, каталаза, глутанионпероксидаза. Кофермент Q10 (убихинон) защищает митохондрии от окислительного повреждения. Кроме того, антиоксидантными свойствами обладают и другие биологические соединения: токоферолы, каротиноиды, женские половые гормоны, тиоловые соединения (содержащие серу), некоторые белковые комплексы, аминокислоты витамин К и др.

Однако под действием агрессивных внешних факторов (например, ультрафиолета) антиоксидантная система кожи не всегда способна ее защитить. Тогда необходимо применять средства, усиливающие антиоксидантную защиту.

Витамин А (ретинол, Retinolum). Роль витамина А в жизнедеятельности организма разнообразна. Ретинол и его метаболиты ретиналь (цис- и трансальдегид) и ретиноловая кислота, эфиры ретинола (ретинилпальмитат, ретинилацетат и др.) претерпевают под воздействием специфических ферментов определенные превращения.

Изучение ретинола начато в 1909 г., синтезирован он в 1933 г. Паулем Каррером. Витамин А в пищевых продуктах присутствует в виде эфиров, а также в виде провитаминов: альфа, бета и гамма-каротинов и др. (в продуктах растительного происхождения). Каротин был обнаружен в 1931 г. в моркови. Самым активным является в-каротин.

В тонкой кишке эфиры ретинола расщепляются с образованием ретинола, который транспортируется в печень, накапливаясь гепатоцитами.

Витамин А широко распространен. Он содержится в продуктах животного происхождения, печени крупного рогатого скота и свиней, яичном желтке, в цельном молоке, сметане, в печени морского окуня, трески, палтуса и др.

Каротины также являются источником витамина А (красно-мякотные овощи — морковь, томаты, перец и др.). Расщепление каротинов происходит преимущественно в энтероцитах под действием специфического фермента (в-каротиндиоксигеназы (не исключена возможность аналогичного превращения в печени) до ретиналя. Под действием специфической кишечной рефуктазы ретиналь восстанавливается в ретинол. Усвоение улучшается в присутствии жиров и при наличии ненасыщенных жирных кислот. Витамин А обладает иммуностимулирующим свойством.

При авитаминозе А наряду с общими явлениями отмечается специфическое поражение кожи, слизистых оболочек и глаз. Отмечается поражение эпителия кожи, сопровождающееся пролиферацией и патологическим его ороговением. Наблюдается гиперкератоз, кожа усиленно шелушится, образуются трещины, появляются угри, кисты сальных желез, обострение бактериальной и микотической инфекции. Имеет место поражение слизистых оболочек ЖКТ, мочеполовой системы, дыхательного аппарата, что нарушает их функцию и способствует развитию заболеваний (гастритов, циститов, пиелитов, ларинготрахеобронхитов, пневмоний). Характерно поражение глазного яблока — ксерофтальмия, нарушение остроты зрения, способности различать предметы в сумерках (нарушение темновой адаптации), при выраженном авитаминозе может нарушаться цветовое восприятие.

При дефиците витамина А нарушается рост костей, так как витамин А необходим для синтеза хондроитинсульфатов костной и других тканей. Витамин А и каротиноиды обладают выраженным антиоксидантным свойством благодаря способности тормозить перекисное окисление липидов.

Каротиноиды — в-каротин (накапливается в яичниках, защищая яйцеклетки от перекисей), резерватол (находится в красном вине и арахисе — мощный антиоксидант), ликопин (обладает выраженным антиоксидантным свойством в отношении липо-протеидов, содержится в помидорах) и др. (лютеин, зеаксантин, кантаксантин накапливаются в сетчатке).

В современных косметических средствах особое место уделяется ретиноидам (синтетические и натуральные соединения, по действию аналогичны ретинолу). Витамин А, как отмечалось, регулирует биохимические процессы в коже, способен воздействовать на клетки кожи (регулирует процессы пролиферации, дифференцировки и межклеточных взаимодействий).

Ретиноиды при местном применении (в концентрациях 0,001-1% — ретин-А, айрол, радевит, ретиноевая кислота, дифферин и др.) способствуют обновлению эпидермиса, нормализации функционирования сальных желез, восстановлению дермального матрикса, применяются в программах лечения угревой сыпи и замедления процессов старения.

Не следует использовать данные препараты при приеме некоторых лекарственных средств, обладающих фотосенсибилизирующим свойством (тетрациклинов, сульфаниламидов, тиазидов и др.). Препараты обладают тератогенным свойством, их не рекомендуются применять у беременных. Использование препаратов для общего применения изложено в разделе «Лечение акне».

Витамин Е (токоферола ацетат, Tocopheroli acetas). Токоферола ацетат является синтетическим препаратом витамина Е. Наибольшей биологической активностью обладает а-токоферол. Под названием «витамин Е» известны и другие токоферолы, они близки по химической природе и биологическому действию. Витамин Е обладает выраженным антиоксидантным свойством. Он захватывает неспаренные электроны активных форм кислорода, блокирует перекисное окисление липидов (а именно тормозит перекисное окисление ненасыщенных жирных кислот), стабилизируя состояние клеточных мембран. Это свойство — предотвращение окисления ненасыщенных жирных кислот — используется в косметических средствах, дает возможность избежать прогоркания жиров.

Кроме того, витамин Е участвует в биосинтезе гемоглобина крови и белков, в делении клеток, в тканевом дыхании и других сложных и важных процессах. Витамин Е восстанавливает витамин А и кофермент Q10 (убихинон). Кроме того, действие витамина Е связано с действием микроэлементов (в частности, селена, который входит в состав фосфолипидглутатионпероксидазы и глутатионпероксидазы, активность которых зависит от витамина С).

Токоферолы в природе содержатся в зеленых частях растений, особенно в молодых ростках злаков, некоторое количество их содержится в жире, мясе животных, яйцах, молоке, креветках, кальмарах и др.

В медицине и косметологии используют экстракты из злаков, пророщенных зерен, растительные масла, полученные холодным отжимом. Богаты токоферолом следующие растительные масла:

  • соевое (1140 мг/кг);
  • хлопковое (990 мг/кг);
  • кукурузное (930 мг/кг);
  • оливковое (130 мг/кг)
  • другие (арахисовое, облепиховое, пальмовое, миндальное, масло лесного ореха).

Витамин С (аскорбиновая кислота, Acidum ascorbinicum) играет важную роль в жизнедеятельности организма. За исключением человека, морских свинок, приматов, остальные живые организмы (животные и растения) синтезируют его из глюкозы. Витамин С — водорастворимый антиоксидант. Благодаря определенному строению молекулы аскорбиновая кислота обладает выраженными восстановительными свойствами. Она участвует в регуляции окислительно-восстановительных процессов, заживлении тканей, образовании гормонов, синтезе серотонина, метаболизме катехоламинов, окислении аминокислот (ароматических), принимает участие в синтезе коллагена и проколлагена, влияет на проницаемость капиллярной сети, улучшает иммунологический статус организма и др. Вместе с витаминами А, Е, липоевой кислотой, витамином Р витамин С входит в состав единой антиоксидантной системы клеток.

Препараты аскорбиновой кислоты применяют для профилактики и лечения многих заболеваний, а также при усиленном физическом труде, умственной перегрузке, в период беременности, лактации.

Не рекомендуется назначать большие дозы аскорбиновой кислоты больным тромбофлебитами, склонностью к тромбозам, с повышенной свертываемостью крови, при сахарном диабете (следить за функцией почек, поджелудочной железы, артериальным давлением).

При недостатке витамина С отмечаются различные клинические проявления авитаминоза (описаны ещё в XIII в.) — цинги. Кожа реагирует перифолликулярным гиперкератозом с характерными папулезными высыпаниями с зоной кровяного венчика, геморрагической сыпью на коже.

Аскорбиновая кислота содержится в значительных количествах в продуктах растительного происхождения:

  • свежий шиповник (6500 мг/кг);
  • перец красный сладкий (2500 мг/кг);
  • смородина черная (2000 мг/кг);
  • облепиха (2000 мг/кг);
  • перец зеленый сладкий (1500 мг/кг);
  • петрушка (1500 мг/кг);
  • капуста брюссельская (1200 мг/кг);
  • укроп (1000 мг/кг);
  • капуста цветная (700 мг/кг);
  • капуста белокочанная (600 мг/кг);
  • апельсин (600 мг/кг);
  • земляника (600 мг/кг) и др.

В косметических средствах применяют вещества — производные витамина С (сам витамин С легко разрушается). Главное назначение таких средств — защита от воздействия У ФИ. Кроме того, витамин С усиливает синтез коллагена в коже, замедляя процессы старения. Чаще используется комплекс витаминов С и Е, липоевой кислоты и кофермента Q10, способных друг друга дополнять и восстанавливать.

Липоевая кислота (6,8-дитиооктановая кислота, Acidium lipoicum) является универсальным антиоксидантом. В 50-е годы прошлого века был открыт фактор роста молочнокислых бактерий, который был идентифицирован с а-липоевой кислотой.

Липоевая кислота может существовать в окисленной и восстановленной форме. Она является коферментом, который участвует в окислительном декарбоксилировании в тканях а-кето-кислот - пировиноградной и а-кетоглутаровой кислот.

Липоевая кислота принимает активное участие в регуляции липидного и углеводного обмена, давая липотропный эффект, влияет на обмен холестерина, оказывает детоксицирующее действие при различных интоксикациях. Благодаря антиоксидантному действию она способна восстанавливать клетки, поврежденные воздействием активных форм кислорода, способствует восстановлению эндогенных антиоксидантов, предотвращает губительное воздействие активных форм кислорода, уменьшает выраженность процессов фотостарения.

При наружном применении отмечается усиление десквамации эпителия (пилинговый эффект). Отмечено заметное уменьшение мелких морщин, меланотических и кератотических высыпаний на лице. Вначале рекомендуется наносить крем через день. При отсутствии побочных эффектов постепенно переходить к двум аппликациям в день. При применении кислота вызывает небольшую воспалительную реакцию и отек кожи.

Кофермент Q10 (убихинон) относится к широко распространенным коферментам во всех живых клетках (убихинон — «вездесущий хинон») — животных, растений, грибов, микроорганизмов. Этот кофермент впервые был описан в 1953 г. Р. Мортоном, который выявил, что данное соединение находится во всех клетках и назвал его убихиноном. Он локализован в митохондриях и мембранных аналогичных им структурах.

Основным источником кофермента Q10 в организме человека считается его биосинтез, дополнительно незначительная часть его поступает с пищей. В митохондриях клеток человека и животных встречается убихинон с 10 изопреновыми звеньями. Он синтезируется из аминокислоты тирозина. Это сложный процесс, в котором участвуют витамины С, группы В (В2, В3, В6, B12), фолиевая кислота, пантотеновая кислота и ряд микроэлементов.

Основная биологическая роль кофермента Q10: он — обязательный компонент митохондрий (структурно-функциональный). Он осуществляет перенос электронов от мембранных де-гидрогеназ до цитохрома, принимает участие в синтезе АТФ. Кофермент благодаря своей растворимости в жирах способен переносить водород в гидрофобной митохондриальной мембране.

Основное действие — общетонизирующее, антиоксидантное, иммуностимулирующее, дезинтоксикационное.

Кофермент Q10 широко применяется при хронических дегенеративных процессах в органах, при интоксикациях, нарушении обмена веществ, при дефиците ферментов и витаминов, физических и психических стрессах и др.

Противопоказаниями являются беременность, кормление грудью.

В отличие от других жирорастворимых витаминов А, D, К, витамин Е не накапливается в жировой ткани организма.
Примерно половина витамина Е, содержащегося в пище, всасывается из кишечника, так как абсорбция витамина Е требует присутствия жирных кислот. Эмульгирование желчью с образованием мицелл жира и растворенного в нем витамина Е происходит в двенадцатиперстной кишке. При всасывании происходит расщепление токоферола ацетата до свободного токоферола. Затем токоферол в составе лимфы попадает в лимфатическую систему и транспортируется вместе с хиломикронами. Для наиболее полного всасывания витамина Е в кишечнике необходимо присутствие желчи и секрета поджелудочной железы. При нарушении желчеоттока всасывание витамина Е замедляется.
У здоровых людей абсорбируется при приеме пищи 51–86 % α-токоферола, у больных с синдромом мальабсорбции – 31–83 %. При раке желудка – 21 %.
Депонируется витамин Е в гипофизе, семенниках, надпочечниках. Выводится с желчью (до 90 %).

Источники

Таблица 1. Содержание витамина Е в растительных продуктах

Продукт Содержание витамина Е, мг/100 г Продукт Содержание витамина Е, мг/100 г
Масло соевое 120 Пшеница 6,5–7,5
Масло кукурузное 100 Бобовые 5
Масло хлопковое 60 Масло сливочное 1,5–2,5
Масло подсолнечное 25 Овощи 1,5–2
Проросшие зерна пшеницы 15–25 Говядина 2
Зерна овса 18–20 Треска, палтус, сельдь 1,5
Рожь, кукуруза 10 Молоко 0,1–0,5

Таблица 2. Количество продукта, обеспечивающее суточную потребность в витамине Е

Функции

Липиды, которые являются неотъемлемой частью всех клеточных мембран, подвергаются разрушению свободными радикалами. Альфа-токоферол перехватывает свободные радикалы и тем самым предотвращает цепную реакцию окисления липидов клеточных мембран. Наряду с сохранением целостности мембраны клеток, витамин Е также защищает от окисления липопротеины низкой плотности.

Однако доказано, что α-токоферол выполняет не только антиоксидантную функцию. Так, он тормозит активность протеинкиназы С – важной сигнальной молекулы клеток. Влияет витамин Е на экспрессию и активность молекул и ферментов в иммунных и воспалительных клетках. Кроме того, он ингибирует агрегацию тромбоцитов и способствует расширению кровеносных сосудов.
Витамин Е также влияет на функцию половых и других эндокринных желез, защищая гормоны от окисления. Стимулирует деятельность мышц, способствуя накоплению в них гликогена и нормализуя обменные процессы. Повышает устойчивость эритроцитов к гемолизу. Играет активную роль в обмене селена, который является интегральной частью фермента глутатион-пероксидазы, обеспечивающего защиту мембран от пероксидных радикалов.

Симптомы недостаточности

  • Мышечная гипотония, мышечная слабость.
  • Ранняя мышечная дистрофия.
  • Склонность к повторным абортам.
  • Ранние формы склеродермии.

Изменения в организме человека при авитаминозе Е изучены слабо, поскольку с растительными маслами человек получает достаточное количество витамина Е. Его дефицит отмечен в некоторых тропических странах, где основным источником пищи являются углеводы, тогда как жиры употребляются в незначительных количествах.

Показания к применению

  • Гиповитаминоз Е.
  • Дисменорея.
  • Угрожающий аборт.
  • Климакс.
  • Гипофункция половых желез у мужчин.
  • Астено-невротический синдром.
  • Мышечная дистрофия.
  • Дегенеративные изменения связочного аппарата, суставов, мышц.
  • Посттравматическая и постинфекционная миопатия.
  • Дерматомиозит.
  • Склеродермия.
  • Красная волчанка.
  • Ревматоидный артрит.
  • Атеросклероз.
  • Ишемическая болезнь сердца.
  • Гипертоническая болезнь.
  • Дерматозы, трофические язвы кожи, псориаз.

Безопасность (переносимость различных форм, симптомы гипервитаминоза)

Токоферолы практически нетоксичны. Но прием в больших дозах (300–800 мг/сутки) может привести к торможению агрегации тромбоцитов и замедлению свертываемости крови.
Токсический эффект от приема высоких доз токоферолов встречается редко. Имеются данные, что передозировка витамина Е у грудных детей вызывает обезвоживание организма. Длительная передозировка может снижать функциональную активность иммунной системы, приводить к точечным кровоизлияниям в слизистой оболочке желудка в результате снижения активности витамина К.
Пищевые добавки α-токоферола представлены в виде его эфиров: α-токоферола сукцинита, фосфата и ацетата. Эфиры токоферола более устойчивы к окислению при хранении, чем неэтерифицированный токоферол. При пероральном приеме фрагмент сукцината, фосфата или ацетата удаляется, остается только токоферол, поэтому биодоступность токоферола в виде эфиров эквивалентна.

Взаимодействие (с другими микронутриентами)

Витамин Е защищает витамин А от окисления.
Витамин С восстанавливает окисленный витамин Е.
Селен и витамин Е усиливают антиоксидантное действие друг друга.