Юбки

Информационная энтропия. Энтропия (теория информации) Информационная энтропия формула

Понятие Энтропи́и впервые введено в 1865 Р. Клаузиусом в термодинамике для определения меры необратимого рассеяния энергии. Энтропия применяется в разных отраслях науки, в том числе и в теории информации как мера неопределенности какого-либо опыта, испытания, который может иметь разные исходы. Эти определения энтропии имеют глубокую внутреннюю связь. Так на основе представлений об информации можно вывести все важнейшие положения статистической физики. [БЭС. Физика. М: Большая российская энциклопедия, 1998].

Информационная двоичная энтропия для независимых (неравновероятных) случайных событий x с n возможными состояниями (от 1 до n , p - функция вероятности) рассчитывается по формуле Шеннона :

Эта величина также называется средней энтропией сообщения. Энтропия в формуле Шеннона является средней характеристикой – математическим ожиданием распределения случайной величины .
Например, в последовательности букв, составляющих какое-либо предложение на русском языке, разные буквы появляются с разной частотой, поэтому неопределённость появления для некоторых букв меньше, чем для других.
В 1948 году, исследуя проблему рациональной передачи информации через зашумлённый коммуникационный канал, Клод Шеннон предложил революционный вероятностный подход к пониманию коммуникаций и создал первую, истинно математическую, теорию энтропии. Его сенсационные идеи быстро послужили основой разработки теории информации, которая использует понятие вероятности. Понятие энтропии, как меры случайности, введено Шенноном в его статье «A Mathematical Theory of Communication», опубликованной в двух частях в Bell System Technical Journal в 1948 году.

В случае равновероятных событий (частный случай), когда все варианты равновероятны, остается зависимость только от количества рассматриваемых вариантов и формула Шеннона значительно упрощается и совпадает с формулой Хартли, которая впервые была предложена американским инженером Ральфом Хартли в 1928 году, как один из научных подходов к оценке сообщений:

, где I – количество передаваемой информации, p – вероятность события, N – возможное количество различных (равновероятных) сообщений.

Задание 1. На равновероятные события.
В колоде 36 карт. Какое количество информации содержится в сообщении, что из колоды взята карта с портретом “туз”; “туз пик”?

Вероятность p1 = 4/36 = 1/9, а p2 = 1/36. Используя формулу Хартли имеем:

Ответ: 3.17; 5.17 бит
Заметим (из второго результата), что для кодирования всех карт, необходимо 6 бит.
Из результатов также ясно, что чем меньше вероятность события, тем больше информации оно содержит. (Данное свойство называется монотонностью )

Задание 2. На неравновероятные события
В колоде 36 карт. Из них 12 карт с “портретами”. Поочередно из колоды достается и показывается одна из карт для определения изображен ли на ней портрет. Карта возвращается в колоду. Определить количество информации, передаваемой каждый раз, при показе одной карты.

что означает термин "энтропия" с точки зрения теории информации? и получил лучший ответ

Ответ от MarZ[гуру]
Информационная энтропия, как определено Шенноном и добавлено другими физиками близко, соотносится с понятием термодинамической энтропии. Это величина, обозначающая несокращаемое (несжимаемое) количество информации, содержимое в данной системе (обычно, - в принимаемом сигнале).
В теории информации
Энтропия в статистической механике имеет тесную связь с информационной энтропией - мерой неопределённости сообщений, которые описываются множеством символов x_1,ldots,x_n и вероятностей p_1,ldots,p_n появления этих символов в сообщении. В теории информации энтропией сообщения с дискретным распределением вероятностей называют величину
Sn = − ∑PkInPk,
k
где
∑Pk = 1.
k
Информационная энтропия равна нулю, когда какая-либо вероятность равна единице (а остальные - нулю), т. е. когда информация полностью предсказуема и не несёт ничего нового для приёмника. Энтропия принимает наибольшее значение для равновероятного распределения, когда все вероятности pk одинаковы; т. е. когда неопределённость, разрешаемая сообщением максимальна. Информационная энтропия также обладает всеми теми математическими свойствами, которыми обладает термодинамическая энтропия. Например, она аддитивна: энтропия нескольких сообщений равна сумме энтропий отдельных сообщений.
Источник: http://www.wikiznanie.ru/ru-wz/index.php/Энтропия

Ответ от Александр Зонов [гуру]
Так же, как и в термодинамике энтропия - мера беспорядочности системы.


Ответ от . [активный]
Энтропи́я (информационная) - мера хаотичности информации, неопределённость появления какого-либо символа первичного алфавита. При отсутствии информационных потерь численно равна количеству информации на символ передаваемого сообщения.


Ответ от 3 ответа [гуру]

Привет! Вот подборка тем с ответами на Ваш вопрос: что означает термин "энтропия" с точки зрения теории информации?

1.4 Энтропия источника. Свойства количества информации и энтропии

Количество информации, содержащееся в одном элементарном сообщении x i , не полностью характеризует источник. Источник дискретных сообщений может быть охарактеризован средним количеством информации, приходящимся на одно элементарное сообщение , носящим название энтропия источника

, i =1…k , (1.3)

где k – объём алфавита сообщений.

Таким образом, энтропия – это среднестатистическая мера неопределенности знаний получателя информации относительно состояния наблюдаемого объекта.

В выражении (1.3) статистическое усреднение (т.е. определение математического ожидания дискретной случайной величины I (X i )) выполняется по всему ансамблю сообщений источника. При этом необходимо учитывать все вероятностные связи между сообщениями. Чем выше энтропия источника, тем большее количество информации в среднем закладывается в каждое сообщение, тем труднее запомнить (записать) или передать такое сообщение по каналу связи. Таким образом, суть энтропии Шеннона заключается в следующем: энтропия дискретной случайной величин – это минимум среднего количества битов, которое нужно передавать по каналу связи о текущем значении данной случайной величины.

Необходимые затраты энергии на передачу сообщения пропорциональны энтропии (среднему количеству информации на сообщение). Отсюда следует, что количество информации в последовательности из N сообщений определяется количеством этих сообщений и энтропией источника, т.е.

I (N )=NH (X ) .

Энтропия как количественная мера информационности источника обладает следующими свойствами:

1) энтропия равна нулю, если хотя бы одно из сообщений достоверно (т.е. имеет вероятность p i = 1);

2) величина энтропии всегда больше или равна нулю, действительна и ограничена;

3) энтропия источника с двумя альтернативными событиями может изменяться от 0 до 1;

4) энтропия – величина аддитивная: энтропия источника, сообщения которого состоят из сообщений нескольких статистически независимых источников, равна сумме энтропий этих источников;

5) энтропия будет максимальной, если все сообщения равновероятны

. (1.4)

При неравновероятных сообщениях x i энтропия уменьшается. В связи с этим вводят такую меру источника, как статистическая избыточность алфавита источника

, (1.5)

где H (X ) – энтропия реального источника; H (X ) max = log 2 k – максимально достижимая энтропия источника.

Определяемая по формуле (1.5) избыточность источника информации говорит об информационном резерве сообщений, элементы которых неравновероятны.

Существует также понятие семантической избыточности , которое следует из того, что любую мысль, которая содержится в сообщении из предложений человеческого языка, можно сформулировать короче. Считается, что если какое-либо сообщение можно сократить без потери его смыслового содержания, то оно имеет семантическую избыточность.

Рассмотрим дискретные случайные величины (д.с.в.) Х и Y , заданные законами распределения P (X = X i )= p i , P (Y = Y j )= q j и совместным распределением P (X = X i , Y = Y j )= p ij . Тогда количество информации, содержащееся в д. с. в. Х относительно д. с. в. Y , определяется по формуле

. (1.6)

Для непрерывных случайных величин (сл. в.) X и Y , заданных плотностями распределения вероятностей r X (t 1 ) , r Y (t 2 ) и r XY (t 1 , t 2 ) , аналогичная формула имеет вид

Очевидно, что

следовательно

т.е. приходим к выражению (1.3) для расчета энтропии H (X ) .

Свойства количества информации и энтропии:

1) I (X , Y ) ≥ 0 ; I (X , Y ) =0 Û X и Y независимые (одна случайная величина ничем не описывает другую);

2) I (X, Y ) =I (Y, X ) ;

3) НХ =0 Û X=const ;

4) I (X, Y ) =HX+HY-H (X, Y ) , где ;

5) I (X, Y ) ≤ I(X, X); I(X, Y)= I(X, X) Þ X= f(Y) .

КОНТРОЛЬНЫЕ ВОПРОСЫ

1 Какие существуют виды информации?

2 Как перевести непрерывную информацию в дискретный (цифровой) вид?

3 Что такое частота дискретизации непрерывной информации?

4 Как формулируется теорема дискретизации?

5 Что такое информация, кодирование, канал связи, шум?

6 В чем заключаются основные положения вероятностного подхода Шеннона к определению количества информации?

7 Как определяется количество информации, содержащееся в одном сообщении дискретного источника?

8 Как определяется количество информации на одно сообщение источника взаимозависимых сообщений?

9 Что такое энтропия источника? Какие ее свойства?

10 При каких условиях энтропия источника максимальна?

11 Как определяется количество информации? Какие свойства количества информации?

12 Чем обусловлена статистическая избыточность источника информации?

Энтропия (теория информации)

Энтропи́я (информационная) - мера хаотичности информации , неопределённость появления какого-либо символа первичного алфавита . При отсутствии информационных потерь численно равна количеству информации на символ передаваемого сообщения.

Например, в последовательности букв, составляющих какое-либо предложение на русском языке, разные буквы появляются с разной частотой, поэтому неопределённость появления для некоторых букв меньше, чем для других. Если же учесть, что некоторые сочетания букв (в этом случае говорят об энтропии n -ого порядка, см. ) встречаются очень редко, то неопределённость ещё более уменьшается.

Для иллюстрации понятия информационной энтропии можно также прибегнуть к примеру из области термодинамической энтропии , получившему название демона Максвелла . Концепции информации и энтропии имеют глубокие связи друг с другом, но, несмотря на это, разработка теорий в статистической механике и теории информации заняла много лет, чтобы сделать их соответствующими друг другу.

Формальные определения

Определение с помощью собственной информации

Также можно определить энтропию случайной величины, введя предварительно понятия распределения случайной величины X , имеющей конечное число значений:

I (X ) = − logP X (X ).

Тогда энтропия будет определяться как:

От основания логарифма зависит единица измерения информации и энтропии: бит , нат или хартли .

Информационная энтропия для независимых случайных событий x с n возможными состояниями (от 1 до n ) рассчитывается по формуле:

Эта величина также называется средней энтропией сообщения . Величина называется частной энтропией , характеризующей только i -e состояние.

Таким образом, энтропия события x является суммой с противоположным знаком всех произведений относительных частот появления события i , умноженных на их же двоичные логарифмы (основание 2 выбрано только для удобства работы с информацией, представленной в двоичной форме). Это определение для дискретных случайных событий можно расширить для функции распределения вероятностей .

В общем случае b -арная энтропия (где b равно 2, 3, …) источника с исходным алфавитом и дискретным распределением вероятности где p i является вероятностью a i (p i = p (a i ) ) определяется формулой:

Определение энтропии Шеннона связано с понятием термодинамической энтропии . Больцман и Гиббс проделали большую работу по статистической термодинамике, которая способствовала принятию слова «энтропия» в информационную теорию. Существует связь между термодинамической и информационной энтропией. Например, демон Максвелла также противопоставляет термодинамическую энтропию информации, и получение какого-либо количества информации равно потерянной энтропии.

Альтернативное определение

Другим способом определения функции энтропии H является доказательство, что H однозначно определена (как указано ранее), если и только если H удовлетворяет условиям:

Свойства

Важно помнить, что энтропия является количеством, определённым в контексте вероятностной модели для источника данных. Например, кидание монеты имеет энтропию − 2(0,5log 2 0,5) = 1 бит на одно кидание (при условии его независимости). У источника, который генерирует строку, состоящую только из букв «А», энтропия равна нулю: . Так, например, опытным путём можно установить, что энтропия английского текста равна 1,5 бит на символ, что конечно будет варьироваться для разных текстов. Степень энтропии источника данных означает среднее число битов на элемент данных, требуемых для её зашифровки без потери информации, при оптимальном кодировании.

  1. Некоторые биты данных могут не нести информации. Например, структуры данных часто хранят избыточную информацию, или имеют идентичные секции независимо от информации в структуре данных.
  2. Количество энтропии не всегда выражается целым числом бит.

Математические свойства

Эффективность

Исходный алфавит, встречающийся на практике, имеет вероятностное распределение, которое далеко от оптимального. Если исходный алфавит имел n символов, тогда он может быть сравнён с «оптимизированным алфавитом», вероятностное распределение которого однородно. Соотношение энтропии исходного и оптимизированного алфавита - это эффективность исходного алфавита, которая может быть выражена в процентах.

Из этого следует, что эффективность исходного алфавита с n символами может быть определена просто как равная его n -арной энтропии.

Энтропия ограничивает максимально возможное сжатие без потерь (или почти без потерь), которое может быть реализовано при использовании теоретически - типичного набора или, на практике, - кодирования Хаффмана , кодирования Лемпеля - Зива - Велча или арифметического кодирования .

Вариации и обобщения

Условная энтропия

Если следование символов алфавита не независимо (например, во французском языке после буквы «q» почти всегда следует «u», а после слова «передовик» в советских газетах обычно следовало слово «производства» или «труда»), количество информации, которую несёт последовательность таких символов (а следовательно и энтропия) очевидно меньше. Для учёта таких фактов используется условная энтропия.

Условной энтропией первого порядка (аналогично для Марковской модели первого порядка) называется энтропия для алфавита, где известны вероятности появления одной буквы после другой (то есть вероятности двухбуквенных сочетаний):

где i - это состояние, зависящее от предшествующего символа, и p i (j ) - это вероятность j , при условии, что i был предыдущим символом.

Так, для русского языка без буквы « » .

Через частную и общую условные энтропии полностью описываются информационные потери при передаче данных в канале с помехами. Для этого применяются так называемые канальные матрицы . Так, для описания потерь со стороны источника (то есть известен посланный сигнал), рассматривают условную вероятность получения приёмником символа b j при условии, что был отправлен символ a i . При этом канальная матрица имеет следующий вид:

b 1 b 2 b j b m
a 1
a 2
a i
a m

Очевидно, вероятности, расположенные по диагонали описывают вероятность правильного приёма, а сумма всех элементов столбца даст вероятность появления соответствующего символа на стороне приёмника - p (b j ) . Потери, приходящиеся на передаваемый сигнал a i , описываются через частную условную энтропию:

Для вычисления потерь при передаче всех сигналов используется общая условная энтропия:

Означает энтропию со стороны источника, аналогично рассматривается - энтропия со стороны приёмника: вместо всюду указывается (суммируя элементы строки можно получить p (a i ) , а элементы диагонали означают вероятность того, что был отправлен именно тот символ, который получен, то есть вероятность правильной передачи).

Взаимная энтропия

Взаимная энтропия, или энтропия объединения , предназначена для расчёта энтропии взаимосвязанных систем (энтропии совместного появления статистически зависимых сообщений) и обозначается H (A B ) , где A , как всегда, характеризует передатчик, а B - приёмник.

Взаимосвязь переданных и полученных сигналов описывается вероятностями совместных событий p (a i b j ) , и для полного описания характеристик канала требуется только одна матрица:

p (a 1 b 1) p (a 1 b 2) p (a 1 b j ) p (a 1 b m )
p (a 2 b 1) p (a 2 b 2) p (a 2 b j ) p (a 2 b m )
p (a i b 1) p (a i b 2) p (a i b j ) p (a i b m )
p (a m b 1) p (a m b 2) p (a m b j ) p (a m b m )

Для более общего случая, когда описывается не канал, а просто взаимодействующие системы, матрица необязательно должна быть квадратной. Очевидно, сумма всех элементов столбца с номером j даст p (b j ) , сумма строки с номером i есть p (a i ) , а сумма всех элементов матрицы равна 1. Совместная вероятность p (a i b j ) событий a i и b j вычисляется как произведение исходной и условной вероятности,

Условные вероятности производятся по формуле Байеса . Таким образом имеются все данные для вычисления энтропий источника и приёмника:

Взаимная энтропия вычисляется последовательным суммированием по строкам (или по столбцам) всех вероятностей матрицы, умноженных на их логарифм:

H (A B ) = − p (a i b j )logp (a i b j ).
i j

Единица измерения - бит/два символа, это объясняется тем, что взаимная энтропия описывает неопределённость на пару символов - отправленного и полученного. Путём несложных преобразований также получаем

Взаимная энтропия обладает свойством информационной полноты - из неё можно получить все рассматриваемые величины.

История

Примечания

См. также

Ссылки

  • Claude E. Shannon. A Mathematical Theory of Communication (англ.)
  • С. М. Коротаев.

1. Введение.

2. Что измерил Клод Шеннон?

3. Пределы эволюционной изменчивости информационных систем.

4. Ограниченность адаптации биологических видов.

5. Этапы развития теории энтропии.

6. Методы исчисления количества структурной информации и информационной энтропии текстов.

7. Информационно-энтропийные соотношения процессов адаптации и развития.

8. Информация и энергия.

9. Заключение.

10. Список литературы.

ВВЕДЕНИЕ

Во второй половине XX века произошли два события, которые, на наш взгляд, в значительной мере определяют дальнейшие пути научного постижения мира. Речь идет о создании теории ин­формации и о начале исследований механизмов антиэнтропийных процессов, для изучения которых синергетика привлекает все новейшие достижения неравновесной термодинамики, теории ин­формации и общей теории систем.

Принципиальное отличие данного этапа развития науки от предшествующих этапов заключается в том, что до создания перечисленных направлений исследований наука способна была объяснить лишь механизмы процессов, приводящих к увеличению хаоса и возрастанию энтропии. Что касается разрабатываемых со времен Ламарка и Дарвина биологических и эволюционных концепций, то они и по сей день не имеют строгих научных обоснований и противоречат Второму началу термодинамики, согласно которому сопровождающее все протекающие в мире процессы возрас­тание энтропии есть непременный физический закон.

Заслуга неравновесной термодинамики заключается в том, что она сумела выявить механизмы антиэнтропийных процессов, не противоречащих Второму началу термодинамики, поскольку локаль­ное уменьшение энтропии внутри самоорганизующейся системы всегда оплачивается большим по абсолютной величине возрас­танием энтропии внешней среды.

Важнейшим шагом на пути постижения природы и механизмов антиэнтропийных процессов следует введение количественной меры информации. Первоначально эта мера предназначалась лишь для решения сугубо прикладных задач техники связи. Однако последующие исследования в области физики и биологии позво­лили выявить универсальные меры, предложенные К.Шен­ноном, позволяющие установить взаимосвязь между количеством информации и физической энтропией и в конечном счете определить сущность новой научной интерпретации понятия «ин­формация» как меры структурной упорядоченности самых разнообразных по своей природе систем.

Используя метафору, можно сказать, что до введения в науку единой информационной количественной меры представленный в естественно-научных понятиях мир как бы «опирался на двух китов»: энергию и вещество. «Третьим китом» оказалась теперь информация, участвующая во всех протекающих в мире процессах, начиная от микрочастиц, атомов и молекул и кончая функциониро­ванием сложнейших биологических и социальных систем.

Естественно, возникает вопрос: подтверждают или опровергают эволюционную парадигму происхождения жизни и биологических видов новейшие данные современной науки?

Для ответа на этот вопрос необходимо прежде всего уяснить, какие именно свойства и стороны многогранного понятия «ин­формация» отражает та количественная мера, которую ввел в науку К.Шеннон.

Использование меры количества информации позволяет анализировать общие механизмы информационно-энтропийных взаимодействий, лежащих в основе всех самопроизвольно протекающих в окружающем мире процессов накопления информации, которые приводят к самоорганизации структуры систем.

Вместе с тем информационно-энтропийный анализ позволяет выявить и пробелы эволюционных концепций, представляющих собой не более чем несостоятельные попытки сведения к простым механизмам самоорганизации проблему происхождения жизни и биологических видов без учета того обстоятельства, что системы такого уровня сложности могут быть созданы лишь на основе той информации, которая изначально заложена в предшествующий их сотворению план.

Проводимые современной наукой ис­следования свойств информационных систем дают все основания утверждать, что все системы могут формироваться только сог­ласно спускаемым с верхних иерархических уровней правилами, причем сами эти правила существовали раньше самих систем в форме изначального плана (идеи творения).

ЧТО ИЗМЕРИЛ КЛОД ШЕННОН?

В основу теории информации положен предложенный К.Шенноном метод исчислений количества новой (непредска­зуемой) и избыточной (предсказуемой) информации, содержащейся в сообщениях, передаваемых по каналам техничес­кой связи.

Предложенный Шенноном метод измерения количества ин­формации оказался настолько универсальным, что его применение не ограничивается теперь узкими рамками чисто технических приложений.

Вопреки мнению самого К.Шеннона, предостерегавшего ученых против поспешного распространения предложенного им метода за пределы прикладных задач техники связи, этот метод стал находить все более широкое примение в исследованиях и фи­зических, и биологических, и социальных систем.

Ключом к новому пониманию сущности феномена информации и механизма информационных процессов послужила установленная Л.Бриллюэном взаимосвязь информации и физической энтропии. Эта взаимосвязь была первоначально заложена в самый фунда­мент теории информации, поскольку для исчисления количества информации Шеннон предложил использовать заимствованную из статистической термодинамики вероятную функцию энтропии.

Многие ученые (начиная с самого К.Шеннона) склонны были рассматривать такое заимствование как чисто формальный прием. Л.Бриллюэн показал, что между вычисленным согласно Шеннону количеством информации и физической энтропии существует не формальная, а содержательная связь.

В статистической физике с помощью вероятностной функции энтропии исследуются процессы, приводящие к термодинамическому равновесию, при котором все состояния молекул (их энергии, скорости) приближаются к равновероятным, а энтропия при этом стремится к макси­мальной величине.

Благодаря теории информации стало очевидно, что с помощью той же самой функции можно исследовать и такие далекие от сос­тояния максимальной энтропии системы, как, например, пись­менный текст.

Еще один важный вывод заключается в том, что

с помощью вероятностной функции энтропии можно анализировать все стадии перехода системы от состояния полного хаоса, которому соответствуют равные значения вероятностей и максимальное значение энтропии, к состоянию предельной упорядоченности (жесткой детерминации), которому соответствует единственно возможное состояние ее элементов.

Данный вывод оказывается в равной мере справедливым для таких несходных по своей природе систем, как газы, кристаллы, письменные тексты, биологические организмы или сообщества и др.

При этом, если для газа или кристалла при вычислении энтропии сравнивается только микросостояние (т.е. состояние атомов и мо­лекул) и макросостояние этих систем (т.е. газа или кристалла как целого), то для систем иной природы (биологических, интеллекту­альных, социальных) вычисление энтропии может производится на том или ином произвольно выбранном уровне. При этом вычис­ляемое значение энтропии рассматриваемой системы и количество информации, характеризующей степень упорядоченности данной системы и равное разности между максимальным и реальным зна­чением энтропии, будет зависеть от распределения вероятности состояний элементов нижележащего уровня, т.е. тех элементов, ко­торые в своей совокупности образуют эти системы.

Другими словами,

количество сохраняемой в структуре системы ин­формации пропорционально степени отклонения системы от состояния равновесия, обусловленного сохраняемым в структуре системы порядком.

Сам того не подозревая, Шеннон вооружил науку универсальной мерой, пригодной в принципе (при условии выявления значенй всех вероятностей) для оценки степени упорядоченности всех существующих в мире систем.

Опредеделив введенную Шеноном информационную меру как меру упорядоченности движения , можно установить взаимосвязь информации и энергии, считая энергию мерой интенсивности движения . При этом ко­личество сохраняемой в структуре систем информации пропорционально суммарной энергии внутренних связей этих систем.

Одновременно с выявлением общих свойств информации как феномена обнаруживаются и принципиальные различия отно­сящихся к различным уровням сложности информационных систем.

Так, например, все физические объекты, в отличие от биологических, не обладают специальными органами памяти, пере­кодировки поступающих из внешнего мира сигналов, информаци­онными каналами связи. Хранимая в них информация как бы «размазана» по всей их структуре. Вместе с тем, если бы кристаллы не способны были сохранять информацию в определяющих их упо­рядоченность внутренних связях, не было бы возможности создавать искусственную память и предназначенные для обработки информации технические устройства на основе кристаллических структур.

Вместе с тем необходимо учитывать, что создание подобных устройств стало возможным лишь благодаря разуму человека, су­мевшего использовать элементарные информационные свойства кристаллов для построения сложных информационных систем.

Простейшая биологическая система превосходит по своей сложности самую совершенную из созданных человеком ин­формационных систем. Уже на уровне простейших одноклеточных организмов задействован необходимый для их размножения сложнейший информационный генетический механизм. В многокле­точных организмах помимо информационной системы наследствен­ности действуют специализированные органы хранения ин­формации и ее обработки (например, системы, осуществляющие перекодирование поступающих из внешнего мира зрительных и слу­ховых сигналов перед отправкой их в головной мозг, системы обработки этих сигналов в головном мозге). Сложнейшая сеть информационных коммуникаций (нервная система) пронизывает и превращает в целое весь многоклеточный организм.