Стильный верх

Можно ли возродить динозавров. Ученые могут воскресить динозавров? Байка палеонтологов или научная теория

Джулия Фейнштейн (Julie Feinstein) из Американского музея естественной истории достает замороженный образец ткани вымирающего животного


Действительно ли так нужно воскрешать динозавров из плоти и крови, если компьютерные технологии и так скоро сделают их совершенно «живыми»?


Чучело овцы Долли сегодня сохраняется в музее


«Решите все свои проблемы простой заморозкой» — слоган компании Applied Cryogenics из мультсериала «Футурама»

Фантасты и футурологи уже не раз предрекали, что в будущем вымершие существа будут снова «восстановлены» через клонирование с использованием сохранившихся — скажем, в замороженном состоянии — фрагментов ДНК. Насколько такое вообще возможно, пока понятно не до конца. Однако в США уже запущен масштабный проект по сохранению замороженных образцов тканей редких и исчезающих животных.

В принципе, подобное клонирование уже состоялось — испанские ученые «оживили» пиренейского козла , последний представитель которых умер в 2000 г. Однако клонированное животное не протянуло и 7 минут, скончавшись от легочной инфекции. Впрочем, многие специалисты сочли это крупным успехом, который вдохновил появление новых коллекций замороженных образцов, среди которых и проект Американского музея естественной истории (AMNH). И как знать, не послужат ли такие хранилища действительно бесценным «ноевым ковчегом», способным спасти от полного исчезновения множество видов.

В хранилище AMNH предусмотрено место для примерно 1 млн образцов, хотя пока что до этого числа ему далеко. Бабочки, лягушачьи лапки, фрагмент кожи кита и шкуры крокодила — такие образцы сохраняются в емкостях, охлаждаемых жидким азотом. А по недавно заключенному с американской Службой национальных парков , коллекция будет пополняться новыми экспонатами. К примеру, уже в августе ученые готовятся принять образцы крови островной лисицы , находящейся на грани вымирания. В теории, такие замороженные клетки когда-нибудь можно будет использовать для клонирования и полного «воскресения» вымершего вида. Но пока что ни одной ученой группе совершить подобное не под силу.

К примеру, испанцы, клонировавшие пиренейского козла, почти буквально следовали методу британца Яна Вилмута (Ian Wilmut) — того самого, который в 1997 г. буквально потряс весь мир, представив клонированную овцу Долли . Это показало принципиальную возможность клонировать млекопитающих — более того, овца прожила больше 6 лет и умерла в 2003 г. Однако и Долли, и испанский козел клонировались с переносом ядра: ученые брали яйцеклетку одного животного и удаляли из нее ядро, а вместо него внедряли ядро из клетки того животного, которое хотели клонировать. Затем такая «гибридная» клетка помещалась в организм суррогатной матери.

Такой метод требует идеального состояния клетки животного, которое ученые намерены клонировать. Для овцы и козла это еще может сработать, но как быть со многими исчезнувшими или исчезающими видами, от которых не сохранились ни рожки, ни ножки? Даже в криогенном хранилище с годами ДНК медленно деградирует, а уж образцы, сохранявшиеся в «естественных» условиях, и вовсе содержат лишь незначительную часть своего генома.

Впрочем, современные компьютерные технологии позволяют скрупулезно восстановить полный геном вымершего вида, комбинируя данные из нескольких образцов. Таким путем ведутся работы по генетическому картографированию древних мамонтов и даже неандертальцев. Уже получены довольно значительные фрагменты генома других вымерших видов — к примеру, пещерного медведя или моа , гигантской птицы, которая царила в Новой Зеландии до появления здесь аборигенов-маори.

А немецким исследователям удалось неплохо поработать с геномом неандертальца — правда, лишь его митохондрий (особых органелл, «энергетических станций» наших клеток, которые обладают собственным генетическим материалом). И если птицы моа вымерли примерно тысячу лет назад, то неандертальцев не существует уже около 40 тыс. лет — и тем ценнее работа ученых из Германии. Впрочем, все эти подходы никогда не сработают с образцами старше 100 тыс. лет: за этот срок ДНК деградирует полностью.

Что же — мы никогда не увидим «динозавропарк», в вольерах которого живут настоящие клонированные тираннозавры или гиганты диплодоки? Как знать. К примеру, не так давно для восстановления генома предложен метод «обратной эволюции», состоящий в работе с генотипом «живых родственников» вымершего вида.

Над таким подходом работает калифорнийский ученый Бенедикт Патен (Benedict Paten) с коллегами. Их решение состоит в секвенировании генома множества отдельных представителей родственных видов, а затем их сравнении — с тем, чтобы с помощью специальных алгоритмов определить «исходный код». К примеру, «обсчитывая» геномы человека и шимпанзе, авторы сумели «прийти» к четырем нашим общим предкам, о чем и отчитались в публикации прошлой осенью.

Впрочем, и этот метод, конечно, не идеален и имеет свои ограничения. Оживление динозавров снова откладывается. И даже если мы сумеем получить данные о геномах всех живых организмов планеты, некоторые из вымерших видов попросту не оставили никаких потомков. Они исчезли, и вряд ли информация об их ДНК каким-то образом может быть получена.

Но допустим, нам удалось получить полную расшифровку генома какого-нибудь вымершего вида. Это — только часть задачи, ведь нам нужно еще получить живой организм. А это — дело почти божественное: перейти от информации, закодированной в ДНК, к реальному существу.

Для начала понадобится синтезировать саму ДНК и каким-то образом правильно разделить ее нити на нужные хромосомы и свернуть их — тоже именно тем уникальным образом, каким они были свернуты и упорядочены у некогда живого существа. Уже на этом этапе сегодня задача неразрешима. Но допустим, и это нам удалось, скажем, используя робота-биолога, который сделал сотни тысяч попыток и нашел единственно верный вариант (о таких роботах мы писали в заметке «Начало новой эры »). Вам потребуется «выпотрошенная» яйцеклетка, в ядро которой вы сможете поместить хромосомы прежде, чем внедрять ее в суррогатную мать. И все, что мы знаем о природе и характере генетических заболеваний, позволяет добавить: малейшая ошибка приведет к полному краху. Словом, все это выглядит слишком сложным и вряд ли позволит в обозримом будущем клонировать хотя бы мамонта. Возможно, проще изобрести машину времени.

Хотя известный американский генетик Джордж Черч (George Church) предлагает совершенно оригинальный подход. Необязательно, — считает он, — клонировать целое древнее животное. В том же мамонте нас интересует волосатый слон, так что проще взять обычного слона и отключить гены, определяющие отсутствие у него волосяного покрова, а вместо них — внедрить в него те, которые отвечали за волосы у мамонта. Шаг за шагом к слону можно добавлять и другие характерные элементы мамонта — скажем, изменять форму бивней и так далее — пока мы более-менее не приблизимся к «первоисточнику». Метод тоже более чем спорный — ведь мы, фактически, тем самым не восстанавливаем исчезнувшие виды, а создаем новые.

Да и нужно ли все это? Многие ученые склоняются к тому, что сложнейшие проблемы, с которыми связано «оживление» некогда вымерших видов, не стоят того. Представим, что мы восстановим тех же птиц моа — влияние их на экосистему современной Новой Зеландии будет, скорее всего, глубоко разрушительным. А тратить колоссальные усилия и средства лишь для того, чтобы получить несколько птиц для зоопарка, кажется верхом расточительности. Об этических вопросах клонирования, скажем, неандертальцев, и вовсе говорить трудно. Как мудро замечают некоторые специалисты, чем восстанавливать потерянное — лучше заняться сохранением еще имеющегося. И мы не можем с ними не согласиться.

В фильме «Парк Юрского периода» учёный научился клонировать динозавров и на необитаемом острове создал целый парк развлечений, в котором вживую можно было увидеть живое древнее животное. Однако гипотеза о возможности клонирования динозавров из ископаемых останков, которая была столь актуальна после выхода на экраны фильма «Парк Юрского периода», в конце концов оказалась несостоятельной.

Австралийские учёные под руководством Мортена Аллентофта и Майкла Банса из университета Мердока (штат Западная Австралия) доказали, что «воссоздать» живого динозавра невозможно.

Исследователи провели радиоуглеродное исследование костной ткани, взятой из окаменелых костей 158 вымерших птиц моа. Эти уникальные и огромные птицы обитали в Новой Зеландии, но ещё 600 лет назад они были полностью уничтожены аборигенами маори. В результате исследований, учёные выяснили, что количество ДНК в костной ткани уменьшается с течением времени – каждый 521 год число молекул сокращается наполовину.

Последние молекулы ДНК исчезают из костной ткани примерно через 6,8 миллиона лет. При этом последние динозавры исчезли с лица земли в конце Мелового периода, то есть около 65 миллионов лет назад – задолго до критического для ДНК порога в 6,8 миллиона лет, и в костной ткани останков, которые удаётся найти археологам, молекул ДНК не осталось.

«В результате мы выяснили, что количество ДНК в костной ткани, если её содержать при температуре 13,1 градуса Цельсия, каждые 521 год уменьшается наполовину», – рассказал руководитель группы исследователей Майк Банс.

«Мы экстраполировали эти данные применительно к другим, более высоким и низким температурам и установили, что если содержать костную ткань при температуре минус 5 градусов, то последние молекулы ДНК исчезнут примерно через 6,8 млн лет», – добавил он.

Достаточно длинные фрагменты генома можно найти лишь в замороженных костях возрастом не более миллиона лет.

Кстати, на сегодняшний день самые древние образцы ДНК были выделены из останков животных и растений, найденных в вечной мерзлоте. Возраст найденных останков составляет около 500 тысяч лет.

Стоит отметить, что учёные будут проводить дальнейшие исследования в этой области, так как различия в возрасте останков отвечают лишь за 38,6 % расхождений в степени разрушения ДНК. На скорость распада ДНК влияет множество факторов, среди которых условия хранения останков после раскопок, химический состав почвы и даже время года, в которое погибло животное.

То есть есть шанс, что в условиях вечных льдов или подземных пещер период полураспада генетического материала окажется дольше, чем предполагают генетики.

А клонировать мамонта можно?

Учёные Якутского Северо-Восточного федерального университета и Сеульского центра исследований стволовых клеток подписали соглашение о совместной работе над клонированием мамонта. Возродить древнее животное учёные попытаются с помощью останков мамонта, найденного в вечной мерзлоте. Мамонту всего около 60 000 лет и благодаря холоду он практически полностью сохранился. Для эксперимента был выбран современный индийский слон, так как его генетический код максимально схож с ДНК мамонтов.

По примерным прогнозам учёных, итоги эксперимента будут известны не ранее чем через 10–20 лет.

Тема клонирования человека развивается не столько в научном ключе, сколько в социальном и этическом, вызывая споры на тему биологической безопасности, самоидентификации «нового человека», возможности появления неполноценных людей, порождая также религиозные споры. При этом эксперименты по клонированию животных проводятся и имеют примеры успешного завершения.

Первый в мире клон – головастик – был создан ещё в 1952 году. Одними из первых успешное клонирование млекопитающего осуществили советские исследователи ещё в 1987 году. Это была обыкновенная домовая мышь.

Самой яркой вехой в истории клонирования живых существ стало появление на свет овечки Долли – это первое клонированное млекопитающее животное, полученное путём пересадки ядра соматической клетки в цитоплазму яйцеклетки, лишённой собственного ядра. Овца Долли являлась генетической копией овцы-донора.

Если в естественных условиях каждый организм сочетает в себе генетические признаки отца и матери, то у Долли был только один генетический «родитель» – овца-прототип. Эксперимент был поставлен Яном Вилмутом и Кейтом Кэмпбеллом в Рослинском институте в Шотландии в 1996 году и стал прорывом в технологиях.

Уже позже британскими и другими учёными были проведены эксперименты по клонированию различных млекопитающих, среди которых были лошади, быки, кошки и собаки.

Мечта о возрождении динозавров, мамонтов и других вымерших животных постоянно всплывает в прессе, хотя подавляющее большинство ученых относятся к этой идее весьма скептически. Смогут ли люди когда-нибудь погулять по парку хоть какого-нибудь периода?

Александр Чубенко

Начнем с самых плохих новостей: парк юрского периода — чистая фантастика. Ни в замурованных в янтаре комарах, ни тем более в окаменевших останках динозавров не осталось даже следов ДНК. Скорее всего, еще до начала съемок первого фильма эпопеи в этом не сомневался и ее научный консультант — палеонтолог Джек Хорнер. Хотя (наверняка не без влияния работы со Спилбергом) он разработал проект создания существа, похожего на динозаврика, но об этом потом.

А недавно на мечте о динозаврах окончательно поставили крест. Датские и австралийские палеогенетики проанализировали ДНК из костей полутора с лишним сотен вымерших новозеландских гигантских птиц моа возрастом от 600 до 8000 лет и рассчитали, что (во всяком случае в условиях хранения костей в земле, а после — в музеях) период полураспада ДНК составляет 521 год. Вывод однозначен: даже в вечной мерзлоте через полтора миллиона лет нити ископаемой ДНК станут слишком короткими для получения информации о последовательностях ее нуклеотидов. Останки последнего динозавра раз в 40 старше — мечтатели могут расслабиться и помечтать о чем-нибудь более приземленном. Например, о мамонтах.


Мамонты: два подхода к мечте

Японский генетик Акира Иритани, один из руководителей «Общества создания мамонтов» (Mammoth Creation Society), в середине 1990-х еще надеялся найти в тушах сибирских мамонтов жизнеспособные яйцеклетку и сперматозоид, а результат их слияния подсадить в матку слонихи. Осознав нереальность такой надежды, этот крепкий старик (сейчас ему чуть за 80) не оставил попыток добыть хотя бы ядро соматической (желательно стволовой) клетки, чтобы получить мамонтенка классическим «методом Долли» — переносом этого ядра в слоновью яйцеклетку.

Похоже, что эта пушка не выстрелит по десяти (а может, и пятидесяти) причинам. Во‑первых, фактически равна нулю вероятность отыскать в тканях, пролежавших 10 000 лет в вечной мерзлоте, клетку с неповрежденными хромосомами: их разрушат кристаллики льда, остаточная активность ферментов, космические лучи… Часть остальных причин разберем на примере другой, менее нереальной идеи.


Упрощенное генеалогическое древо семейства слоновых

Геном мамонта международная группа ученых прочитала почти полностью еще в 2008 году. Его хромосомы можно собрать «по кирпичику» — синтезировать цепочки нуклеотидов, и даже не все шесть с лишним миллиардов, а несколько тысяч пар генов (из примерно 20 000), которые отличаются от аналогичных участков ДНК самого близкого из выживших родственников мамонтов — азиатского слона. Останется «всего лишь» прочитать геном этого слона, сравнить его с геномом мамонта, получить культуру слоновьих эмбриональных клеток, заменить в их хромосомах нужные гены — и вперед, по дороге, проторенной Яном Уилмутом, ведущим на веревочке овечку Долли.

Самых разных животных, от рыб до мартышек, с тех пор наклонировали множество. Правда, клетки у доноров брали при жизни и при необходимости хранили в жидком азоте, и жизнеспособных новорожденных получается меньше 1% от яйцеклеток с пересаженным ядром. И гены при этом если и меняли, то один-два, а не тысячи. И пересаживали яйцеклетки животным того же вида или очень близкородственного, а индийские слоны и мамонты — примерно такие же «родственники», как люди и шимпанзе.

Сможет ли слониха принять эмбрион мамонта, вынашивать его два года и родить живого и здорового детеныша? Весьма сомнительно. И что вы будете делать с одним-единственным мамонтенком? Для поддержания популяции даже в «парке плейстоценового периода» необходимо стадо хотя бы в сотню голов.


И весьма желательно, чтобы они не были родными братьями и сестрами, иначе слишком высока вероятность наследственных болезней у их потомства — а последние мамонты вымерли в том числе и потому, что не смогли приспособиться к очередному потеплению из-за слишком малой вариативности их геномов. И так далее. Но если когда-нибудь клонировать мамонтов все же удастся, на севере Якутии им давно приготовили и стол, и дом.

Плейстоценовый парк

Несколько десятков тысяч лет назад на месте нынешней тундры в таких же, как в наше время, климатических условиях колосилась похожая на саванну тундростепь, в которой бизонов, мамонтов, шерстистых носорогов, пещерных львов и прочей живности было примерно столько же, как сейчас — слонов, носорогов, антилоп, львов и другого зверья в африканских заповедниках. Короткого северного лета растениям хватало, чтобы накопить достаточно биомассы и для себя, и для прокорма травоядных на время полярной ночи.

Но во время последнего масштабного потепления, около 10 000 лет назад, животные мамонтовой степи вымерли (возможно, первобытные охотники немного ускорили этот процесс). Без навоза зачахли растения, экосистема пошла вразнос, и еще через несколько тысяч лет тундра стала безвидна и почти пуста.


Но в 1980 году в заказнике неподалеку от города Черского в устье Колымы группа энтузиастов во главе с руководителем Северо-Восточной научной станции РАН Сергеем Зимовым начала работу по воссозданию экосистемы мамонтовой степи с помощью интродукции в тундру выживших плейстоценовых животных или их современных аналогов, способных существовать в арктическом климате.

Начали они с огороженного участка площадью 50 га и небольшого стада якутских лошадок, которые вскоре выщипали и вытоптали почти всю растительность в этом слишком маленьком для них «краале». Но это было только начало. Сейчас (пока — на чуть большей площади, 160 га) к лошадям уже подселили лосей, северных оленей, овцебыков, маралов и зубров.

Скромные достижения

Последний из истребленных собаками динго, туземцами и, окончательно, европейскими овцеводами тасманийских сумчатых волков — тилацинов (Thylacinus cynocephalus) умер в зоопарке в 1936 году. В 2008 году исследователи из Мельбурнского университета выделили из заспиртованных тканей музейных образцов тилацина один из регуляторных генов, усиливающих синтез белка другого гена, который отвечает за развитие хрящей и костей, и заменили им аналогичный ген-регулятор в яйцеклетках мышей. В двухнедельных мышиных эмбрионах (родиться потенциальным уродцам не позволили) синтезировался не мышиный, а тилациновый белок Col2A1. Но о возрождении сумчатого волка на мышиной основе даже мечтать не стоит — это просто генетический фокус, результаты которого, возможно, когда-нибудь пригодятся, например, для изучения функций генов исчезнувших видов.
В той же Австралии весной этого года биоинженеры из Университета Нового Южного Уэльса попытались вырастить вымершую всего лет 30 назад лягушку Rheobatrachus silus — мелкую зверушку, любопытную тем, что ее самки вынашивали икру во рту. Ядра из замороженных тканей R. silus ученые внедрили в икринки самого близкого к ней вида лягушек, Mixophyes fasciolatus, и даже дождались нескольких делений яйцеклеток, а после этого эмбрионы погибли. Но лиха беда начало, хотя для публики эта земноводная мелочь — совсем не то, что динозавры.
Неудачей, хотя и намного меньшей, закончился и эксперимент исследователей из Сарагосского университета по клонированию пиренейского горного козла, последний представитель которых погиб в 2000 году. Первые две попытки добиться рождения козлят из эмбрионов, полученных из ядер клеток, замороженных еще при жизни последней особи, и яйцеклеток домашней козы, закончились в лучшем случае выкидышами. На третий раз (в 2009 г.) испанские ученые создали 439 химерных эмбрионов, 57 из которых начали делиться и были имплантированы в матки суррогатных матерей. К сожалению, из семи забеременевших коз до родов дотянула только одна, а козленок умер через несколько минут после рождения из-за проблем с дыханием.

Правда, зубры — обитатели широколиственных лесов, и если они не сумеют адаптироваться в Арктике, их планируют заменить более подходящим видом — лесными бизонами. Надо только дождаться, пока увеличится их небольшое стадо, присланное коллегами из заповедников северной Канады и определенное на постой в питомник на юге Якутии.

Когда (и если) вместо большого парка проект получит площадь, достаточную для организации заповедника, можно будет выпустить из вольеров волков и медведей и даже попытаться интродуцировать амурских тигров — самую подходящую из имеющихся замену пещерным львам. Ну а мамонты? А мамонты — потом. Если получится.


Летите, голуби?

Проект возрождения американских странствующих голубей (Ectopistes migratorius) с экологией никак не связан. Даже наоборот, еще в начале XIX века на востоке Северной Америки странствующие голуби летали стаями в сотни миллионов птиц, объедая леса, как саранча, и оставляя за собой дюймовый слой помета, устраивали на деревьях колонии из сотни гнезд и, несмотря на все старания хищников, индейцев, а потом и первых белых поселенцев, не уменьшались в числе.

Но с появлением железных дорог охота на странствующих голубей стала выгодным бизнесом. Стреляй не глядя в пролетающую над фермой тучу или собирай птенцов, как яблоки, и сдавай скупщику — пучок за пятачок, зато пучков — сколько дотащишь. Всего за четверть века от миллиардов странствующих голубей осталось несколько тысяч — слишком мало для того, чтобы восстановить популяцию этих коллективистов, даже если бы в те времена это кому-то пришло в голову. Последняя странствующая голубка умерла в зоопарке в 1914 году.


Мечтой возродить странствующего голубя воспылал молодой американский генетик Бен Новак. Он даже сумел получить под свою идею финансирование от фонда Revive and Restore («Возродить и восстановить») — одного из отделений основанной писателем Стюартом Брэндом организации Long Now, поддерживающей экстравагантные, но не слишком безумные проекты в разных областях наук.

Как материал для перестановки генов Бен планирует использовать яйцеклетки полосатохвостого голубя — вида, наиболее родственного странствующему. Правда, от общего предка их отделяют 30 млн лет и куда большее, чем между мамонтами и слонами, число мутаций. И опыт с заменой генов в эмбрионах птиц более-менее отработан только на курицах, а с голубями до сих пор никто не имел дела…

Но геном странствующего голубя уже прочитан по образцу тканей, предоставленному одним из музеев, и в марте 2013 года Новак начал работу по реконструкции вымершей птицы в Университете Калифорнии в Санта-Круз. Правда, даже если проект завершится удачей, его результаты будут жить в зоопарках: в природе странствующие голуби могут существовать только в составе многомиллионных стай. Что ждет «кукурузный пояс» США, если эти стаи смогут приспособиться к новым условиям жизни?

Хотя, даже если воссоздать странствующих голубей не удастся, полученные результаты пригодятся для попыток возрождения дронтов (смешных птиц Додо), новозеландских моа, похожих на них мадагаскарских эпиорнисов и других недавно вымерших видов птиц.


В январе 2013 мировые СМИ облетела невероятная новость: известный генетик Джордж Черч из Гарвардского университета ищет отважную женщину на роль суррогатной матери для клонирования неандертальца. Через день все приличные издания, клюнувшие на эту наживку, опубликовали опровержение: оказалось, что журналисты из Daily Mail немножко ошиблись при переводе интервью в немецком еженедельнике Spiegel. Черч, который геномом неандертальца никогда не занимался, всего лишь рассуждал о том, что теоретически клонировать его когда-нибудь будет можно, но нужно ли?

Курозавры: вперед, в прошлое!

А теперь вернемся к тому ученому, с которого начали, — Джеку Хорнеру из Университета штата Монтана, автору книги «Как построить динозавра» (How to Build a Dinosaur). Правда, это будет скорее курозавр: проект так и называется — Chickenosaurus, и на его осуществление, по мнению автора, потребуется всего пять лет. Для этого нужно «разбудить» в курином эмбрионе сохранившиеся, но не активные гены динозавров. Начать можно будет с зубов: у археоптерикса и других первоптиц зубы были вполне неплохие. Правда, максимум, которого смогли добиться работающие в этой области исследователи, — это 16-дневные куриные зародыши с несколькими коническими зубками в передней части клюва, но дорога в тысячу ли начинается с первого шага…


Именно так, в несколько этапов — шаг за шагом, ген за геном, белок за белком — Хорнер и планирует вырастить своих курозавров. Четвертый палец убрать, крылья превратить в лапки… И потребуется на первый этап проекта пять-семь лет работы и пара миллионов долларов. Правда, сведений о том, что проект «Курозавры» получил финансирование, пока нет. Но меценат наверняка найдется: не так уж важно, что это будут не совсем настоящие динозаврики и для начала — размером с курицу. Зато красиво.

Кстати о красоте: темная раскраска и чешуя у динозавров в «Парке юрского периода» делает их более страшными, но, скорее всего, не соответствует действительности. И Хорнер, и многие другие палеонтологи давно придерживаются мнения о том, что большинство, если не все наземные динозавры были теплокровными и покрыты яркими перьями. В том числе и Ужасный Царственный Ящер — Tyrannosaurus rex. Теплокровность — пока вопрос спорный, но несомненные следы перьев на окаменелых останках близких родственников тираннозавра — Yutyrannus huali (в переводе с латинско-китайского — «Красивый тиран в перьях», вес — почти 1,5 т, длина — 9 м) — недавно обнаружила экспедиция китайских палеонтологов. И что с того, что по строению его примитивные перья длиной до 15 см больше похожи на цыплячий пушок, а не на сложные перья современных птиц? Ну не может быть, чтобы они не были красиво раскрашены!

А если будущие мамонты, дронты, динозавры и прочие вымершие животные будут не совсем настоящими, а почти идентичными натуральным — кто из вас откажется прогуляться по парку периода, на первый взгляд неотличимого от юрского или плейстоценового?

Про серию фильмов по Парку Юрского периода, думаю, слышали все. Для кого-то оригинальная трилогия - это теплые воспоминания из детства, а кому-то больше нравятся новые фильмы. И есть что-то страстное и вдохновляющее в этих самых больших, жестоких и «мертвых» существах, которые когда-либо гуляли по нашей планете.

И, наверное, достаточное количество людей задавалось вопросом - а можно ли действительно клонировать или любым другим способом возродить динозавров, как это показано в фильмах? Последовательность «мистер ДНК» в оригинальном фильме - отличная визуализация, да и сама концепция извлечения ДНК из комаров, которые попили динозавровой крови и потом застыли в янтаре - кажется вполне рабочей. Однако, это просто красивая выдумка.

Совершенно случайно, мы недавно определили общую геномную структуру динозавров (используя геном ныне живущих «родственников» динозавров - птиц и черепах). Геномная структура - это способ, которым гены расположены в хромосомах у каждого вида. Хотя отдельные животные одного и того же вида будут иметь различные последовательности ДНК, общая геномная структура является видоспецифичной.

Ученые начали с разработки наиболее вероятной геномной структуры «птицечерепашьего» предка, прежде чем отслеживать любые изменения, которые произошли с того времени и по сей день. Эта родословная начинается с появления динозавров и птерозавров ~ 240 миллионов лет назад, проходит через тероподов (куда входят тираннозавры и велоцирапторы) и заканчивается птицами.

Несмотря на то, что мы не предъявляли никаких претензий к извлечению ДНК динозавров, вопрос, который хочется задать после прочтения материала выше - «это приближает нас к настоящему парку Юрского периода?» Увы, но ответом является решительной «нет», и вот почему.

Во-первых, идея об извлечении ДНК динозавров, содержащейся внутри кровососущих насекомых, сохранившихся в янтаре, просто не работает на практике. Были обнаружены доисторические москиты с кровью динозавров, но любая ДНК за это время давно деградировала. ДНК неандертальцев и мамонтов были успешно изолированы, но ДНК динозавров слишком стара. Самая старая ДНК, которая когда-либо была найдена, имеет возраст около миллиона лет. С учетом того, что динозавры жили более 66 миллионов лет назад, шансов на успех просто нет.

Во-вторых, даже если бы мы могли извлечь ДНК динозавров, она была бы измельчена на миллионы крошечных кусочков, и мы плохо знаем, как эти части должны быть организованы. Это было бы похоже на попытку собрать самый трудный пазл в мире, не представляя, как выглядит конечный объект, и имеются ли какие-либо недостающие части.


Увы, но вырастить велоцираптора в курином яйце не получится. И в страусином тоже.

В Парке Юрского периода ученые находят эти недостающие части и берут их из генома лягушки, но это не даст вам динозавра, это даст вам гибрид или «лягушкозавра». Эти фрагменты ДНК лягушки могут иметь всевозможные негативные последствия для развивающегося эмбриона. Было бы разумнее использовать птиц, а не лягушек, поскольку они более тесно связаны (но это все равно не сработает).

В-третьих, если вы думаете, что получите геном, и - бинго - сможете воссоздать целое животное, то вы опять заблуждаетесь. ДНК является отправной точкой, но развитие животного внутри яйца представляет собой сложный «танец» генов, включающихся и выключающихся в нужное время при определенных условиях.

Короче говоря, вам нужно идеальное яйцо динозавра и вся сложная химия, содержащаяся в нем. В книге ученые создают искусственные яйца, в фильмах используются страусиные яйца. Ни один из этих способов не будет работать, вы не можете «положить» куриную ДНК внутрь страусиного яйца в надежде получить цыпленка (люди пытались). То же самое можно сказать и о велоцирапторах.

И это при том, что мы не затрагиваем этические нормы, получение разрешений на эксперименты и расчет влияния на экосистему.

Поэтому мы не можем воскресить динозавра, но...

Динозавры никогда не вымирали. Напротив, они сейчас среди нас. Птицы не эволюционировали от динозавров, птицы не были тесно связаны с динозаврами. Птицы - динозавры.

Динозавры (включая птиц) являются жертвами по меньшей мере четырех массовых вымираний, после чего они возрождались в новых, все более разнообразных и странных формах. Одним из ключевых элементов нашей статьи является то, что мы теоретизируем, что их способность делать это облегчается их структурой генома. Ученые обнаружили, что у птиц и большинства нептичьих динозавров было много общих хромосом (пакетов ДНК), что позволяло им создавать множество вариаций, которые являются движителем естественного отбора.

Тем не менее, если заглядывать далеко вперед, возможно, что в будущем можно будет использовать технологию Парка Юрского периода, чтобы помочь нивелировать часть вреда, причиненного людьми. Человечество причастно к исчезновению таких известных птиц-динозавров, как додо и странствующий голубь. Восстановление их ДНК, возраст которой составляет всего несколько столетий, является гораздо более реалистичной задачей. Также, возможно, что яйца близких к ним живых видов могут подойти для того, чтобы «внедрить» в них ДНК вымерших видов, и в правильных условиях мы можем использовать их, чтобы воскресить некоторых «почти» динозавров.

В последнее время в СМИ все чаще появляются сообщения о том, что ученые уже без всякого труда могут воскресить вымерших 65 миллионов лет назад динозавров. Однако в реальности все не так просто, как представляется тем, кто не знаком со всеми тонкостями данных исследований. Потому что на самом деле воскресить динозавров нельзя. Но создать заново — можно.

"Воскресить" вымершее животное можно лишь двумя путями. Первый из них практиковался еще в ХХ веке. Суть его состоит в том, что если дикий предок каких-нибудь домашних животных вымирает, то можно добиться восстановления его внешнего облика путем избирательного скрещивания между собой представителей самых примитивных пород, происходящих от этого предка. Именно таким способом еще в 70-х годах прошлого столетия немецким биологам удалось "воскресить" вымершего предка (точнее говоря, одного из предков) современных лошадей — тарпана (Equus ferus ferus ).

Скрещивая представителей нескольких пород, в чьих клетках были гены тарпанов (которых истребили в начале ХХ века, то есть не так-то и давно), ученым удалось создать существо, внешний облик которого абсолютно точно соответствовал таковому предковой формы. Впоследствии эти тарпаны были выпущены на волю, и сейчас в Германии и Польше пасется несколько табунов данных животных. Интересно, что за несколько поколений их внешний вид не претерпел существенных изменений — что говорит о том, что "воскрешение" прошло удачно, и данные животные, видимо, действительно содержат большинство генов дикого предка лошади. Однако проверить это невозможно, поскольку генетического банка данных самих тарпанов не сохранилось.

Однако к динозаврам подобный подход не применим — ведь никаких домашних пород этих рептилий нет. Есть, правда, потомки этой группы, то есть птицы и сохранился отряд рептилий, очень близкий к предковой форме "ужасных ящеров" — крокодилы, однако скрещивание представителей этих, весьма далеких друг от друга в эволюционном плане таксонов ничего не даст (да оно и чисто технически невозможно — слишком велика разница в геномах).

Другой способ "воскрешения" основан на создании гибридного эмбриона (подробнее о нем читайте в статье "Чем опасны гибридные эмбрионы? ") . Если ДНК вымершего животного сохранилась в полном объеме, то ее можно пересадить в ядро зародышевой клетки представителя наиболее близкого вида, и, таким образом, вырастить требуемый организм. С птицами и рептилиями это просто — у них все развитие проходит в яйце, а вот зародыша млекопитающего на определенной стадии нужно трансплантировать в тело суррогатной мамы, в роли которой выступает самка того же, наиболее близкого вида (например, в случае "воскрешения" мамонта это будет азиатская слониха). Таким способом биологи планируют "воскресить" мамонта, шерстистого носорога, большерогого оленя и некоторых других доисторических гигантов, а также истребленного в ХХ веке сумчатого волка (подробнее о том, что это такое, читайте в статье "Волки боялись в лес выходить... "), ДНК которых прекрасно сохранилась и, что называется, ждет своего часа.

Однако с динозаврами и этот номер не пройдет — у ученых не имеется ни одного образца ДНК этих гигантов. Дело в том, что последние представители этой группы вымерли около 65 млн. лет тому назад, а за это время все кости этих гигантов успели, что называется, перекристаллизоваться, то есть вся органика в них была замещена на неорганические вещества, поэтому по сути сейчас они представляют собой каменные глыбы, чем-то похожие на части тела динозавров. При таких условиях ДНК сохраниться не может. Кроме того, в мезозойскую эру не было покровных оледенений и вечной мерзлоты, поэтому найти труп "ужасного ящера", который пролежал бы в замороженном состоянии миллионы лет (как это часто бывало с мамонтами), не представляется возможным.

Так что, как видите, "воскресить" динозавров нельзя. Однако ученые убеждены, что их можно создать заново. Правда, это будут уже совсем другие динозавры, не имеющие внешне ничего общего с реально существовавшими гигантами. Но в то же время вполне себе полноценные.

Данная методика основана на том, что гены раннего развития (гомеозисные), которые контролируют формирование первых стадий зародыша — структуры достаточно консервативные, и часто практически в полном объеме сохраняются у потомков. Именно поэтому эмбрион человека на ранних стадиях похож на рыбу, потом на амфибию и только уже после приобретает черты, специфические для млекопитающих. Поэтому и у птиц, конечно же, остались гомеозисные гены динозавров. В процессе формирования эмбриона они даже работают, но очень короткое время — потом специальные белки их "выключают" для того, чтобы запустилась работа гомеозисных генов, специфичных только для птиц.

Но что если каким-то образом предотвратить эти выключения динозавровых генов? Ученые из из Университета Макгилла (США) под руководством Ханса Ларссона обнаружили, что на раннем этапе развития куриного эмбриона у зародыша есть хвост, похожий на рептильный. Но дальше в определенный момент работа генов, отвечающих за его формирование, заканчивается, и хвост исчезает. Доктор Ларссон и его коллеги несколько раз пытались блокировать деятельность белков, выключающих хвостовые гены. В конце концов им удалось это сделать, однако "хвостатый" цыпленок вскоре погиб, так толком и не сформировавшись.

По другому пути пошли онтогенетики Джон Фэллон и Мэтт Харрис из Висконсинского университета (США) Они, экспериментируя с мутантными куриными эмбрионами, заметили что у некоторых из них есть странные выросты на челюстях зародыша. Данные "шишки" при ближайшем рассмотрении оказались саблевидными зубами, которые были идентичны зубам эмбрионов аллигаторов и, что самое интересное, некоторых мелких юрских динозавров.

Позже выяснилось, что эти мутанты обладали рецессивным геном, который в норме убивает плод до рождения. Однако в качестве побочного эффекта своей деятельности этот ген включает другой, являющийся гомеозисным геном динозавров, отвечающий за формирование зубов. Заинтересовавшись данным феноменом, Фэллон и Харрис создали вирус, который вел себя подобно рецессивному гену, но не был смертельным для эмбриона. Когда его вводили в нормальные зародыши, у тех начинали расти зубы, и никаких вредоносных побочных эффектов при этом не наблюдалось. Однако вылупиться "зубастику" так и не дали — по закону США гибридные эмбрионы должны быть уничтожены через 14 дней после завершения эксперимента.

Однако наибольших успехов удалось достичь доктору Архату Абжанову из Гарвардского университета. Он вычислил, какие из гомеозисных генов динозавров отвечают за формирование типичной рептильной морды вместо птичьего клюва. Ему удалось также определить белки, которые "отключают" эти гены.

После этого Абжанов добавил в клетки эмбриона другие белки, блокирующие деятельность "выключателей", в результате чего последние перестали работать. В итоге динозавровые гены уже отключить было некому, и у цыпленка выросла вполне симпатичная мордочка, чем-то напоминающая крокодилью. При этом сам эмбрион не погиб — он продолжал активно развиваться. Однако после 14 дней пришлось, к великой досаде Абжанова, умертвить и его.

Все эти исследования говорят о том, что создание динозавров из птиц принципиально возможно. Правда, биологи до сих пор не знают всех гомеозисных генов, оставшихся у птиц от динозавров, однако установить это не так то уж и сложно — ведь есть "контрольная" группа, то есть крокодилы. Не изучены так же до конца все тонкости их работы, однако и это — всего лишь вопрос времени. Так что не исключено, что в ближайшем будущем генетикам все-таки удастся превратить птицу в небольшого оперенного динозаврика из рода Maniraptora , вроде тех, которые существовали в середине юрского периода.

Сразу же следует заметить, что данное существо, конечно же, не будет представителем вида, уже обитавшего на нашей планете — ведь его геном будет включать птичью ДНК, отсутствовавшую у классических динозавров. Это будет представитель уже нового вида, созданного людьми, однако имеющего строение и физиологию, характерную для настоящих динозавров.