Свитера

Как меняется знак неравенства при переносе знака. Линейные неравенства

Что нужно знать о значках неравенств? Неравенства со значком больше (> ), или меньше (< ) называются строгими. Со значками больше или равно (), меньше или равно () называются нестрогими. Значок не равно () стоит особняком, но решать примеры с таким значком тоже приходится постоянно. И мы порешаем.)

Сам значок не оказывает особого влияния на процесс решения. А вот в конце решения, при выборе окончательного ответа, смысл значка проявляется в полную силу! Что мы и увидим ниже, на примерах. Есть там свои приколы...

Неравенства, как и равенства, бывают верные и неверные. Здесь всё просто, без фокусов. Скажем, 5 > 2 - верное неравенство. 5 < 2 - неверное.

Такая подготовка работает для неравенств любого вида и проста до ужаса.) Нужно, всего лишь, правильно выполнять два (всего два!) элементарных действия. Эти действия знакомы всем. Но, что характерно, косяки в этих действиях - и есть основная ошибка в решении неравенств, да... Стало быть, надо повторить эти действия. Называются эти действия вот как:

Тождественные преобразования неравенств.

Тождественные преобразования неравенств очень похожи на тождественные преобразования уравнений. Собственно, в этом и есть основная проблема. Отличия проскакивают мимо головы и... приехали.) Поэтому я особо выделю эти отличия. Итак, первое тождественное преобразование неравенств:

1. К обеим частям неравенства можно прибавить (отнять) одно и то же число, или выражение. Любое. Знак неравенства от этого не изменится.

На практике это правило применяется как перенос членов из левой части неравенства в правую (и наоборот) со сменой знака. Со сменой знака члена, а не неравенства! Правило один в один совпадает с правилом для уравнений. А вот следующие тождественные преобразования в неравенствах существенно отличается от таковых в уравнениях. Поэтому я выделяю их красным цветом:

2. Обе части неравенства можно умножить (разделить) на одно и то же положительное число. На любое положительное не изменится.

3. Обе части неравенства можно умножить (разделить) на одно и то же отрицательное число. На любое отрицательное число. Знак неравенства от этого изменится на противоположный.

Вы помните (надеюсь...), что уравнение можно умножать/делить на что попало. И на любое число, и на выражение с иксом. Лишь бы не на ноль. Ему, уравнению, от этого ни жарко, ни холодно.) Не меняется оно. А вот неравенства более чувствительны к умножению/делению.

Наглядный пример на долгую память. Напишем неравенство, не вызывающее сомнений:

5 > 2

Умножим обе части на +3, получим:

15 > 6

Возражения есть? Возражений нет.) А если умножим обе части исходного неравенства на -3, получим:

15 > -6

А это уже откровенная ложь.) Полное враньё! Обман народа! Но стоит изменить знак неравенства на противоположный, как всё становится на свои места:

15 < -6

Про враньё и обман - это я не просто так ругаюсь.) "Забыл сменить знак неравенства..." - это главная ошибка в решении неравенств. Это пустяковое и несложное правило стольких людей ушибло! Которые забыли...) Вот и ругаюсь. Может, запомнится...)

Особо внимательные заметят, что неравенство нельзя умножать на выражение с иксом. Респект внимательным!) А почему нельзя? Ответ простой. Мы же не знаем знак этого выражения с иксом. Оно может быть положительное, отрицательное... Стало быть, мы не знаем, какой знак неравенства ставить после умножения. Менять его, или нет? Неизвестно. Разумеется, это ограничение (запрет умножения/деления неравенства на выражение с иксом) можно обойти. Если очень надо будет. Но это тема для других уроков.

Вот и все тождественные преобразования неравенств. Ещё раз напомню, что они работают для любых неравенств. А теперь можно переходить к конкретным видам.

Линейные неравенства. Решение, примеры.

Линейными неравенствами называются неравенства, в которых икс находится в первой степени и нет деления на икс. Типа:

х+3 > 5х-5

Как решаются такие неравенства? Они решаются очень просто! А именно: с помощью сводим самое замороченное линейное неравенство прямо к ответу. Вот и всё решение. Главные моменты решения я буду выделять. Во избежание дурацких ошибок.)

Решаем это неравенство:

х+3 > 5х-5

Решаем точно так же, как и линейное уравнение. С единственным отличием:

Внимательно следим за знаком неравенства!

Первый шаг самый обычный. С иксами - влево, без иксов - вправо... Это первое тождественное преобразование, простое и безотказное.) Только знаки у переносимых членов не забываем менять.

Знак неравенства сохраняется:

х-5х > -5-3

Приводим подобные.

Знак неравенства сохраняется:

> -8

Осталось применить последнее тождественное преобразование: разделить обе части на -4.

Делим на отрицательное число.

Знак неравенства изменится на противоположный:

х < 2

Это ответ.

Так решаются все линейные неравенства.

Внимание! Точка 2 рисуется белой, т.е. незакрашенной. Пустой внутри. Это означает, что она в ответ не входит! Я её специально такой здоровой нарисовал. Такая точка (пустая, а не здоровая!)) в математике называется выколотой точкой.

Остальные числа на оси отмечать можно, но не нужно. Посторонние числа, не относящиеся к нашему неравенству, могут и запутать, да... Нужно только помнить, что увеличение чисел идёт по стрелке, т.е. числа 3, 4, 5, и т.д. находятся правее двойки, а числа 1, 0, -1 и т.д. - левее.

Неравенство х < 2 - строгое. Икс строго меньше двух. Если возникают сомнения, проверка простая. Подставляем сомнительное число в неравенство и размышляем: "Два меньше двух? Нет, конечно!" Именно так. Неравенство 2 < 2 неверное. Не годится двойка в ответ.

А единичка годится? Конечно. Меньше же... И ноль годится, и -17, и 0,34... Да все числа, которые меньше двух - годятся! И даже 1,9999.... Хоть чуть чуть, да меньше!

Вот и отметим все эти числа на числовой оси. Как? Тут бывают варианты. Вариант первый - штриховка. Наводим мышку на рисунок (или касаемся картинки на планшете) и видим, что заштрихована область всех иксов, подходящих под условие х < 2 . Вот и всё.

Второй вариант рассмотрим на втором примере:

х ≥ -0,5

Рисуем ось, отмечаем число -0,5. Вот так:

Заметили разницу?) Ну да, трудно не заметить... Эта точка - чёрная! Закрашенная. Это означает, что -0,5 входит в ответ. Здесь, кстати, проверка и смутить может кого-нибудь. Подставляем:

-0,5 ≥ -0,5

Как так? -0,5 никак не больше -0,5! А значок больше имеется...

Ничего страшного. В нестрогом неравенстве годится всё, что подходит под значок. И равно годится, и больше годится. Следовательно, -0,5 в ответ включается.

Итак, -0,5 мы отметили на оси, осталось ещё отметить все числа, которые больше -0,5. На этот раз я отмечаю область подходящих значений икса дужкой (от слова дуга ), а не штриховкой. Наводим курсор на рисунок и видим эту дужку.

Особой разницы между штриховкой и дужками нет. Делайте, как учитель сказал. Если учителя нет - рисуйте дужки. В более сложных заданиях штриховка менее наглядна. Запутаться можно.

Вот так рисуются линейные неравенства на оси. Переходим к следующей особенности неравенств.

Запись ответа для неравенств.

В уравнениях было хорошо.) Нашли икс, да и записали ответ, например: х=3. В неравенствах существуют две формы записи ответов. Одна - в виде окончательного неравенства. Хороша для простых случаев. Например:

х < 2.

Это полноценный ответ.

Иногда требуется записать то же самое, но в другой форме, через числовые промежутки. Тогда запись начинает выглядеть очень научно):

х ∈ (-∞; 2)

Под значком скрывается слово "принадлежит".

Читается запись так: икс принадлежит промежутку от минус бесконечности до двух не включая . Вполне логично. Икс может быть любым числом из всех возможных чисел от минус бесконечности до двух. Двойкой икс быть не может, о чём нам и говорит слово "не включая".

А где это в ответе видно, что "не включая" ? Этот факт отмечается в ответе круглой скобкой сразу после двойки. Если бы двойка включалась, скобка была бы квадратной. Вот такой: ]. В следующем примере такая скобка используется.

Запишем ответ: х ≥ -0,5 через промежутки:

х ∈ [-0,5; +∞)

Читается: икс принадлежит промежутку от минус 0,5, включая, до плюс бесконечности.

Бесконечность не может включаться никогда. Это не число, это символ. Поэтому в подобных записях бесконечность всегда соседствует с круглой скобкой.

Такая форма записи удобна для сложных ответов, состоящих из нескольких промежутков. Но - именно для окончательных ответов. В промежуточных результатах, где предполагается дальнейшее решение, лучше использовать обычную форму, в виде простого неравенства. Мы с этим в соответствующих темах разберёмся.

Популярные задания с неравенствами.

Сами по себе линейные неравенства просты. Поэтому, частенько, задания усложняются. Так, чтобы подумать надо было. Это, если с непривычки, не очень приятно.) Но полезно. Покажу примеры таких заданий. Не для того, чтобы вы их выучили, это лишнее. А для того, чтобы не боялись при встрече с подобными примерами. Чуть подумать - и всё просто!)

1. Найдите любые два решения неравенства 3х - 3 < 0

Если не очень понятно, что делать, вспоминаем главное правило математики:

Не знаешь, что нужно - делай, что можно!)

х < 1

И что? Да ничего особенного. Что нас просят? Нас просят найти два конкретных числа, которые являются решением неравенства. Т.е. подходят под ответ. Два любых числа. Собственно, это и смущает.) Подходит парочка 0 и 0,5. Парочка -3 и -8. Да этих парочек бесконечное множество! Какой ответ правильный?!

Отвечаю: все! Любая парочка чисел, каждое из которых меньше единицы, будет правильным ответом. Пишите, какую хотите. Едем дальше.

2. Решить неравенство:

4х - 3 0

Задания в таком виде встречаются редко. Но, как вспомогательные неравенства, при нахождении ОДЗ, например, или при нахождении области определения функции, - встречаются сплошь и рядом. Такое линейное неравенство можно решать как обычное линейное уравнение. Только везде, кроме знака "=" (равно ) ставить знак "" (не равно ). Так к ответу и подойдёте, со знаком неравенства:

х 0,75

В более сложных примерах, лучше поступать по-другому. Сделать из неравенства равенство. Вот так:

4х - 3 = 0

Спокойно решить его, как учили, и получить ответ:

х = 0,75

Главное, в самом конце, при записи окончательного ответа, не забыть, что мы нашли икс, который даёт равенство. А нам нужно - неравенство. Стало быть, этот икс нам как раз и не нужен.) И надо записать его с правильным значком:

х 0,75

При таком подходе получается меньше ошибок. У тех, кто уравнения на автомате решает. А тем, кто уравнения не решает, неравенства, собственно, ни к чему...) Ещё пример популярного задания:

3. Найти наименьшее целое решение неравенства:

3(х - 1) < 5х + 9

Сначала просто решаем неравенство. Ракрываем скобки, переносим, приводим подобные... Получаем:

х > - 6

Не так получилось!? А за знаками следили!? И за знаками членов, и за знаком неравенства...

Опять соображаем. Нам нужно найти конкретное число, подходящее и под ответ, и под условие "наименьшее целое". Если сразу не осеняет, можно просто взять любое число и прикинуть. Два больше минус шести? Конечно! А есть подходящее число поменьше? Разумеется. Например, ноль больше -6. А ещё меньше? Нам же самое маленькое из возможных надо! Минус три больше минус шести! Уже можно уловить закономерность и перестать тупо перебирать числа, правда?)

Берём число поближе к -6. Например, -5. Ответ выполняется, -5 > - 6. Можно найти ещё число, меньше -5, но больше -6? Можно, например -5,5... Стоп! Нам сказано целое решение! Не катит -5,5! А минус шесть? Э-э-э! Неравенство строгое, минус 6 никак не меньше минус 6!

Стало быть, правильный ответ: -5.

Надеюсь, с выбором значения из общего решения всё понятно. Ещё пример:

4. Решить неравенство:

7 < 3х+1 < 13

Во как! Такое выражение называется тройным неравенством. Строго говоря, это сокращённая запись системы неравенств. Но решать такие тройные неравенства всё равно приходится в некоторых заданиях... Оно решается безо всяких систем. По тем же тождественным преобразованиям.

Надо упростить, довести это неравенство до чистого икса. Но... Что куда переносить!? Вот тут самое время вспомнить, что перенос влево-вправо, это сокращённая форма первого тождественного преобразования.

А полная форма звучит вот как: К обеим частям уравнения (неравенства) можно прибавить/отнять любое число, или выражение.

Здесь три части. Вот и будем применять тождественные преобразования ко всем трём частям!

Итак, избавимся от единички в средней части неравенства. Отнимем от всей средней части единичку. Чтобы неравенство не изменилось, отнимем единичку и от оставшихся двух частей. Вот так:

7 -1< 3х+1-1< 13-1

6 < < 12

Уже лучше, правда?) Осталось разделить все три части на тройку:

2 < х < 4

Вот и всё. Это ответ. Икс может любым числом от двойки (не включая) до четвёрки (не включая). Этот ответ тоже записывается через промежутки, такие записи будут в квадратных неравенствах. Там они - самое обычное дело.

В конце урока повторю самое главное. Успех в решении линейных неравенств зависит от умения преобразовывать и упрощать линейные уравнения. Если при этом следить за знаком неравенства, проблем не будет. Чего я вам и желаю. Отсутствия проблем.)

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.



















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цель урока: формирование навыков решения линейных неравенств.

Тип урока: урок изучения нового материала.

Задачи урока:

  • Образовательные:
  1. вспомнить, что такое неравенство;
  2. вспомнить свойства числовых неравенств;
  3. выяснить с учащимися, что значит решить неравенство;
  4. ввести понятие линейного неравенства;
  5. познакомить учащихся с алгоритмом решения линейных неравенств.
  • Воспитательные:
    1. отработать навыки решения линейных неравенств, применяя алгоритм решения линейных неравенств.
  • Развивающие:
    1. развитие умения самостоятельно анализировать текст, добывать знания и делать выводы;
    2. развитие познавательного интереса;
    3. развитие мышления учащихся;
    4. развитие умений общаться в группах, сотрудничать и взаимообучать;
    5. развитие правильной речи учащихся.

    Ход урока

    1 этап. Мотивационный

    Учитель обращается к классу: «Серьезность изучаемых в школе предметов не мешает нам творчески переосмысливать новые знания. Думая о сегодняшнем уроке, я почти случайно зарифмовала свои размышления. Послушайте, что у меня получилось, и попробуйте определить тему урока».

    В математике - соотношенье между числами и выраженьями,
    В них и знаки для сравнения: меньше, больше иль равно?
    Я вам дам одну подсказку, вполне полезную возможно,
    Мир объединяет равенство, частица «не» указывает на …… (неравенство)

    Итак, тема урока «Неравенства ».

    2 этап. Изучение нового материала

    Стадия осмысления: (5 мин) (добывание учащимися знаний)

    (применяю прием маркировки текста «Инсерт» - учащиеся читают текст, вникают в него, делают специальные пометки)

    Отмечают «+» то, что им уже известно , «-» то, что новое, не знакомо .

    Текст

    Неравенство – это два числа или выражения, соединенные одним из знаков:

    • > (больше),
    • < (меньше),
    • ≤ (меньше или равно),
    • ≥ (больше или равно),
    • ≠ (не равно).

    Линейное неравенство – это неравенство вида ax + b > 0 (или ax + b < 0) , где а и b – любые числа, причем а 0 .

    Решением неравенства с одной переменной называется значение переменной, которое обращает его в верное числовое неравенство. Например, х + 5 < 17. Подставив вместо х значение 1 , получим 1+ 5 < 17, 6 < 17 – верное числовое неравенство. Значит, х = 1 – решение данного неравенства.

    Решить неравенство – это значит найти все его решения или доказать, что решений нет.

    Свойства числовых неравенств:

    1. Если а > b и b > c, то а > с.
    2. Если а > b, то а + с > b + с.
    3. Если а > b и m > 0, то аm > bm;
      Если а > b и m < 0 , то am < bm.
    4. Если а > b и с > d, то a + c > b + d.
    5. Если а > b и с > d, то ac > bd, где а, b, c, d – положительные числа.
    6. Если а > b, а и b – неотрицательные числа, то aⁿ > bⁿ , n – любое натуральное число.
    Алгоритм решения линейных неравенст Пример: решить неравенство
    5(х – 3) > 2х - 3
    1. Раскрыть скобки: 5х – 15 > 2х - 3
    2. Перенести все слагаемые с х влево, а числа вправо, меняя при этом знак на противоположный: 5х – 2х > -3 + 15
    3. Привести подобные слагаемые: 3х > 12
    4. Разделить обе части неравенства на число, стоящее перед х (если это число положительное, то знак неравенства не меняется; если это число отрицательное, то знак неравенства меняется на противоположный): 3х > 12: 3
    х > 4
    5. Перейти от аналитической модели х > 4 к геометрической модели:
    6. Указать множество решений данного неравенства, записав ответ: Ответ: (4; +∞)

    Фаза рефлексии: (беседа с классом по вопросам)

    Учитель составляет «Кластер» на доске.

    1. Что из того, что вы прочитали, вам уже было знакомо?
    2. Что из того, что вы прочитали, оказалось новой информацией?
    3. А что вам напоминает алгоритм решения линейного неравенства? (решение линейного уравнения, за исключением создания геометрической модели и записи ответа)

    Судя по этой схеме, вы уже многое знаете о неравенствах, а сегодня на уроке мы расширим эти знания.

    3 этап. Закрепление нового материала (отработка навыков решения линейных неравенств)

    Стратегия «Зигзаг»: (в группе по 5 человек, 5 групп) отработка навыков решения линейных уравнений: каждый ученик получает свое неравенство, решает, применяя алгоритм решения линейного неравенства, затем обсуждение в группах и объяснение другим ученикам.

    1. Попытка решить самому!!! 5 мин

    Задание: Решить неравенство и изобразить множество его решений на координатной прямой.

    №1. 17 – х > 2∙(5 – 3х)

    №2. 2∙(32 – 3х) ≥ 1- х

    №3. 8 + 5х ≤ 3∙(7 + 2х)

    №4. 2∙(0,1х – 1) < 7 – 0,8х

    №5. 5х + 2 ≤ 1 – 3∙(х + 2)

    2. Разбор задания в группе. 5 мин

    Переходят в экспертные группы с одинаковым заданием. Обсуждают решения, консультируют друг друга и исправляют свои ошибки, если они есть. Необходимо, чтобы каждый понял решение своего неравенства.

    Учитель выступает в роли консультанта.

    (Ученик сам – группа учеников – учитель)

    3. Взаимообучение. 5-7 мин Ученики возвращаются на свои места и рассказывают ход решения своего неравенства по очереди другим, идет запись в тетрадь неравенств.

    Задача группы: чтобы каждый овладел алгоритмом решения линейных неравенств.

    После того, как ученики готовы идет самопроверка нескольких неравенств через ИКТ, нескольких у доски.

    Обсуждение (беседа): Кто верно выполнил решение всех неравенств («один за всех и все за одного ») поднимите руку? Кто допустил ошибки? Где и почему?

    Если позволит время: для тех, кто не ошибся решить (или в качестве домашнего задания) творческое задание (одно на выбор) и сделать к нему соответствующий вывод:

    1) 2(х + 8) – 5х < 4 – 3х (решения нет)

    2)

    3) При каких значениях х двучлен 5х – 7 принимает положительные значения?

    4 этап. Подведение итогов

    Ребята! Чем мы на уроке занимались? Чему учились?

    Давайте вспомним: Что значит решить неравенство? Чем мы будем пользоваться при решении неравенства? (обратить еще раз внимание на алгоритм)

    Ребята! Как вы думаете, кто сегодня отличился на уроке? (оценивают себя сами)

    5 этап. Домашнее задание

    П.34 В программе для создания слайдов выполнить презентацию о неравенстве Коши.

    Хочу я вам дать совет:

    «Через математические знания, полученные в школе, лежит широкая дорога к огромным, почти необозримым областям труда и открытий»

    А.И. Маркушевич

    Всем спасибо за урок! Желаю успехов!

    РЕШЕНИЕ ЛИНЕЙНЫХ НЕРАВЕНСТВ

    Свойства числовых равенств помогали нам решать уравнения, т. е. находить те значения переменной, при которых уравнение обращается в верное числовое равенство. Точно так же свойства числовых неравенств помогут нам решать неравенства с переменной, т. е. находить те значения переменной, при которых неравенство с переменной обращается в верное числовое неравенство. Каждое такое значение переменной называют обычно решением неравенства с переменной.

    Рассмотрим, например, неравенство

    2х + 5 < 7.

    Подставив вместо х значение 0 , получим 5 < 7 - верное неравенство; значит, х = 0 х значение 1 , получим 7 < 7 - неверное неравенство; поэтому х = 1 не является решением данного неравенства. Подставив вместо х значение -3 , получим -6 + 5 < 7 , т.е. - 1 < 7 - верное неравенство; следовательно, х = -3 - решение данного неравенства. Подставив вместо х значение 2,5 , получим 2 - 2,5 + 5 < 7 , т. е. 10 < 7 - неверное неравенство. Значит, х = 2,5 не является решением неравенства.

    Но вы же понимаете, что это - тупиковый путь: ни один математик не станет так решать неравенство, ведь все числа невозможно перебрать! Вот тут-то и нужно использовать свойства числовых неравенств, рассуждая следующим образом.

    Нас интересуют такие числа х , при которых 2х + 5 < 7 - верное числовое неравенство. Но тогда и 2х + 5 - 5< 7 - 5 - верное неравенство (согласно свойству 2: к обеим частям неравенства прибавили одно и то же число - 5 ). Получили более простое неравенство 2х < 2 . Разделив обе его части на положительное число 2 , получим (на основании свойства 3) верное неравенство х < 1 .

    Что это значит? Это значит, что решением неравенства является любое число х , которое меньше 1 . Эти числа заполняют открытый луч (-∞, 1) . Обычно говорят, что этот луч - решение неравенства 2х + 5 < 7 (точнее было бы говорить о множестве решений, но математики, как всегда, экономны в словах). Таким образом, можно использовать два варианта записи решений данного неравенства: х < 1 или (-∞, 1) .

    Свойства числовых неравенств позволяют руководствоваться при решении неравенств следующими правилами:

    Правило 1. Любой член неравенства можно перенести из одной части неравенства в другую с противоположным знаком, не изменив при этом знак неравенства.

    Правило 2. Обе части неравенства можно умножить или разделить на одно и то же положительное число, не изменив при этом знак неравенства.

    Правило 3. Обе части неравенства можно умножить или разделить на одно и то же отрицательное число, изменив при этом знак неравенства на противоположный .

    Применим эти правила для решения линейных неравенств, т. е. неравенств, сводящихся к виду ах + b > 0 (или ах + b < 0 ),

    где а и b - любые числа, за одним исключением: а ≠ 0 .

    Пример 1.

    Решить неравенство Зх - 5 ≥ 7х - 15 .

    Р е ш е н и е .

    Перенесем член в левую часть неравенства, а член - 5 - в правую часть неравенства, не забыв при этом изменить знаки и у члена , и у члена -5 (руководствуемся правилом 1). Тогда получим

    Зх - 7х ≥ - 15 + 5 , т. е. - 4х ≥ - 10 .

    Разделим обе части последнего неравенства на одно и то же отрицательное число - 4 , не забыв при этом перейти к неравенству противоположного смысла (руководствуясь правилом 3). Получим х < 2,5 . Это и есть решение заданного неравенства.

    Как мы условились, для записи решения можно использовать обозначение соответствующего промежутка числовой прямой: (-∞, 2,5] .

    О т в е т: х < 2,5 , или (-∞, 2,5] .

    Для неравенств, как и для уравнений, вводится понятие равносильности. Два неравенства f(x) < g(x) и r(x) < s(x) называют равносильными , если они имеют одинаковые решения (или, в частности, если оба неравенства не имеют решений).

    Обычно при решении неравенства стараются заменить данное неравенство более простым, но равносильным ему. Такую замену называют равносильным преобразованием неравенства . Эти преобразования как раз и указаны в сформулированных выше правилах 1-3.

    Пример 2.

    Решить неравенство

    Р е ш е н и е.

    Умножим обе части неравенства на положительное число 15 , оставив знак неравенства без изменения (правило 2), Это позволит нам освободиться от знаменателей, т. е. перейти к более простому неравенству, равносильному данному:

    Воспользовавшись для последнего неравенства правилом 1, получим равносильное ему более простое неравенство:

    Наконец, применив правило 3, получим

    О т в е т: или

    В заключение заметим, что, используя свойства числовых неравенств, мы, конечно, сможем решить не любое неравенство с переменной, а только такое, которое после ряда простейших преобразований (типа тех, что были выполнены в примерах из этого параграфа) принимает вид ах > b (вместо знака > может быть, разумеется, любой другой знак неравенства, строгого или нестрогого).

    Например, неравенством является выражение \(x>5\).

    Виды неравенств:

    Если \(a\) и \(b\) – это числа или , то неравенство называется числовым . Фактически это просто сравнение двух чисел. Такие неравенства подразделяются на верные и неверные .

    Например:
    \(-5<2\) - верное числовое неравенство, ведь \(-5\) действительно меньше \(2\);

    \(17+3\geq 115\) - неверное числовое неравенство, так как \(17+3=20\), а \(20\) меньше \(115\) (а не больше или равно).


    Если же \(a\) и \(b\) – это выражения, содержащие переменную, то у нас неравенство с переменной . Такие неравенства разделяют по типам в зависимости от содержимого:

    \(2x+1\geq4(5-x)\)

    Переменная только в первой степени

    \(3x^2-x+5>0\)

    Есть переменная во второй степени (квадрате), но нет старших степеней (третьей, четвертой и т.д.)

    \(\log_{4}{(x+1)}<3\)

    \(2^{x}\leq8^{5x-2}\)

    ... и так далее.

    Что такое решение неравенства?

    Если в неравенство вместо переменной подставить какое-нибудь число, то оно превратится в числовое.

    Если данное значение для икса превращает исходное неравенство верное числовое, то оно называется решением неравенства . Если же нет - то данное значение решением не является. И чтобы решить неравенство – нужно найти все его решения (или показать, что их нет).

    Например, если мы в линейное неравенство \(x+6>10\), подставим вместо икса число \(7\) –получим верное числовое неравенство: \(13>10\). А если подставим \(2\), будет неверное числовое неравенство \(8>10\). То есть \(7\) – это решение исходного неравенства, а \(2\) – нет.

    Однако, неравенство \(x+6>10\) имеет и другие решения. Действительно, мы получим верные числовые неравенства при подстановке и \(5\), и \(12\), и \(138\)... И как же нам найти все возможные решения? Для этого используют Для нашего случая имеем:

    \(x+6>10\) \(|-6\)
    \(x>4\)

    То есть нам подойдет любое число больше четырех. Теперь нужно записать ответ. Решения неравенств, как правило, записывают числовыми , дополнительно отмечая их на числовой оси штриховкой. Для нашего случая имеем:

    Ответ: \(x\in(4;+\infty)\)

    Когда в неравенстве меняется знак?

    В неравенствах есть одна большая ловушка, в которую очень «любят» попадаться ученики:

    При умножении (или делении) неравенства на отрицательное число, меняется на противоположный («больше» на «меньше», «больше или равно» на «меньше или равно» и так далее)

    Почему так происходит? Чтобы это понять, давайте посмотрим преобразования числового неравенства \(3>1\). Оно верное, тройка действительно больше единицы. Сначала попробуем умножить его на любое положительное число, например, двойку:

    \(3>1\) \(|\cdot2\)
    \(6>2\)

    Как видим, после умножения неравенство осталось верным. И на какое бы положительное число мы не умножали – всегда будем получать верное неравенство. А теперь попробуем умножить на отрицательное число, например, минус тройку:

    \(3>1\) \(|\cdot(-3)\)
    \(-9>-3\)

    Получилось неверное неравенство, ведь минус девять меньше, чем минус три! То есть, для того, чтобы неравенство стало верным (а значит, преобразование умножения на отрицательное было «законным»), нужно перевернуть знак сравнения, вот так: \(−9<− 3\).
    С делением получится аналогично, можете проверить сами.

    Записанное выше правило распространяется на все виды неравенств, а не только на числовые.

    Пример: Решить неравенство \(2(x+1)-1<7+8x\)
    Решение:

    \(2x+2-1<7+8x\)

    Перенесем \(8x\) влево, а \(2\) и \(-1\) вправо, не забывая при этом менять знаки

    \(2x-8x<7-2+1\)

    \(-6x<6\) \(|:(-6)\)

    Поделим обе части неравенства на \(-6\), не забыв поменять с «меньше» на «больше»

    Отметим на оси числовой промежуток. Неравенство , поэтому само значение \(-1\) «выкалываем» и в ответ не берем

    Запишем ответ в виде интервала

    Ответ: \(x\in(-1;\infty)\)

    Неравенства и ОДЗ

    Неравенства, также как и уравнения могут иметь ограничения на , то есть на значения икса. Соответственно, из промежутка решений должны быть исключены те значения, которые недопустимы по ОДЗ.

    Пример: Решить неравенство \(\sqrt{x+1}<3\)

    Решение: Понятно, что для того чтоб левая часть была меньше \(3\), подкоренное выражение должно быть меньше \(9\) (ведь из \(9\) как раз \(3\)). Получаем:

    \(x+1<9\) \(|-1\)
    \(x<8\)

    Все? Нам подойдет любое значение икса меньшее \(8\)? Нет! Потому что если мы возьмем, например, вроде бы подходящее под требование значение \(-5\) – оно решением исходного неравенства не будет, так как приведет нас к вычислению корня из отрицательного числа.

    \(\sqrt{-5+1}<3\)
    \(\sqrt{-4}<3\)

    Поэтому мы должны еще учесть ограничения на значения икса – он не может быть таким, чтоб под корнем было отрицательное число. Таким образом, имеем второе требование на икс:

    \(x+1\geq0\)
    \(x\geq-1\)

    И чтобы икс был окончательным решением, он должен удовлетворять сразу обоим требованиям: он должен быть меньше \(8\) (чтобы быть решением) и больше \(-1\) (чтобы быть допустимым в принципе). Нанося на числовую ось, имеем окончательный ответ:

    Ответ: \(\left[-1;8\right)\)

    § 1 Линейные неравенства

    На этом занятии мы познакомимся с определением линейного неравенства. Рассмотрим свойства, используемые при решении линейных неравенств. Научимся решать линейные неравенства.

    Линейным неравенствомназывают неравенства вида aх+ b > 0 или aх+ b < 0, где переменная или искомая величина, a и b- некоторые числа, причем a ≠ 0.

    Так как неравенство может быть строгим и нестрогим, то линейные неравенства могут иметь следующий вид aх+ b ≥0, aх+ b ≤ 0.

    Неравенство является линейным, так как х входит в неравенство в первой степени.

    Решением линейного неравенства является значение переменной х, при котором неравенство обращается в верное числовое неравенство.

    Возьмем неравенство 2х+5 > 0.

    Подставим вместо х значение нуль. Получим 5 > 0. Это верное неравенство. Значит, х=0, является решением неравенства 2х+5>0.

    Подставив вместо х значение -2,5, получим 0 > 0. Это неверное неравенство. Следовательно, х= -2,5 не является решением линейного неравенства 2х + 5>0. Подбирая значения х, можно найти еще несколько частных решений.

    Найти все решения или доказать, что неравенство не имеет решений, означает решить линейное неравенство.

    Неравенства, которые имеют одни и те же решения, называются равносильными.

    При решении неравенств используют правила, применяя которые можно получить более простые для решения равносильные неравенства.

    § 2 Примеры решения линейных неравенств

    Решим неравенство 2х+5>0. И первое правило, которое здесь можно использовать: если член неравенства перенести из одной части неравенства в другую с противоположным знаком, не изменив при этом знак неравенства, то получим равносильное неравенство.

    Разделим обе части неравенства на 2. Получим х > -2,5.

    Ответ можно записать так: х > -2,5 или в виде числового промежутка

    Результатом является положительно-направленный открытый луч.

    Открытый, так как наше неравенство строгое, а значит, число -2,5 не включается в числовой промежуток.

    Решим другое линейное неравенство 3х - 3 ≥ 7х - 15.

    Так же, как при решении линейных уравнений, слагаемые с х перенесем влево, а числовые слагаемые - вправо. Не забудем при переносе поменять знаки слагаемых на противоположные. Исходя из первого правила, знак неравенства при этом не меняется.

    Получим 3х - 7х ≥ -15 + 3 или -4х ≥ -12.

    Далее используем третье правило: если обе части неравенства умножить или разделить на одно и то жеотрицательное число, изменив при этом знак неравенства на противоположный, то получим равносильное неравенство.

    Разделим обе части неравенства на -4.

    Получим х ≤ 3.

    Покажем решение на оси х.

    Результатом является отрицательно-направленный закрытый луч. Закрытый, так как наше неравенство нестрогое, а значит, число 3 включается в числовой промежуток.

    Рассмотрим решение более сложного линейного неравенства

    Используя второе правило, обе части неравенства умножим на число 15. Число 15 будет общим знаменателем дробей.

    Умножим числители на дополнительные множители.

    Получим неравенство 5х + 6х - 3 > 30х.

    Используя правило один, перенесем слагаемые с х влево, числовые слагаемые - вправо, поменяв знаки при переносе на противоположные.

    Получим -19х > 3.

    Применим правило три, разделим обе части неравенства на -19. В этом случае надо поменять знак неравенства на противоположный знак.

    Покажем решение на оси х.

    Результатом является открытый луч, потому что неравенство строгое, а значит, число не включается в числовой промежуток. Это отрицательно-направленный луч.

    Решим следующее неравенство

    Обе части неравенства умножим на 4.

    Получим 5 - 2х ≤ 8х. Перенесем слагаемые с х влево, числовые слагаемые - вправо

    2х - 8х ≤ -5 или -10х ≤-5.

    Разделим обе части неравенства на -10. Это число отрицательное, по правилу 3 необходимо поменять знак неравенства на противоположный.

    Получим х≥0,5.

    Покажем решение на оси х.

    Результатом является закрытый луч, так как неравенство нестрогое, а значит, число 0,5 включается в числовой промежуток. Это положительно-направленный луч.

    При решении неравенств после преобразований может получиться так, что коэффициент при х равен нулю, например, 0∙х> b (или 0∙х< b). Такое неравенство не имеет решений или решением является любое число.

    Решим неравенство 2(х + 8) -5х < 4-3х.

    Раскроем скобки 2х + 16 - 5х < 4 - 3х.

    Используя свойство один, перенесем слагаемые с х влево, а числа- вправо, получим 0∙х < -12. При любом значении х неравенство обращается в неравенство 0 < -12. Это неверное неравенство.

    Ответ: нет решения или пустое множество.

    Решим другое неравенство х > х - 1.

    Перенесем х справа налево, получим 0∙х > -1. При любом значении х неравенство обращается в неравенство 0 > -1. Это верное неравенство.

    § 3 Краткий итог урока

    Важно запомнить:

    Линейным неравенством называют неравенство вида aх+ b > 0 (или aх+ b < 0, aх+ b ≥ 0, aх+ b≤ 0), где х - переменная, a и b- некоторые числа, причем a≠0.

    Решить неравенство - значит найти все его решения или доказать, что решений нет.

    При решении линейных неравенств используют правила, позволяющие заменить данное неравенство на более простые для решения равносильные ему неравенства:

    1) если член неравенства перенести из одной части неравенства в другую с противоположным знаком, не изменив при этом знак неравенства, то получим равносильное неравенство;

    2)если обе части неравенства умножить или разделить на одно и то же положительное число, не изменив при этом знак неравенства, то получим равносильное неравенство;

    3) если обе части неравенства умножить или разделить на одно и то же отрицательное число, изменив при этом знак неравенства на противоположный, то получим равносильное неравенство.

    Целью применения этих правил является приведение линейного неравенства к виду х > b/a или х < b/a.

    Решением линейного неравенства является числовой промежуток. Это может быть открытый или закрытый числовой луч, который может быть как

    положительно-направленным, так и отрицательно-направленным.

    Список использованной литературы:

    1. Макарычев Ю.Н., Н.Г. Миндюк, Нешков К.И., Суворова С.Б., под редакцией Теляковского С.А. Алгебра: учебн. для 8 кл. общеобразоват. учреждений. - М.: Просвещение, 2013.
    2. Мордкович А.Г. Алгебра. 8 кл.: В двух частях. Ч.1: Учеб. для общеобразоват. учреждений. - М.: Мнемозина.
    3. Рурукин А.Н. Поурочные разработки по алгебре: 8 класс.- М.: ВАКО, 2010.
    4. Алгебра 8 класс: поурочные планы по учебнику Ю.Н. Макарычева, Н.Г. Миндюк, К.И. Нешкова, С.Б. Суворовой / Авт.-сост. Т.Л. Афанасьева, Л.А. Тапилина. -Волгоград: Учитель, 2005.