Мoдныe детки

Изменение КПД и tпп при изменении температуры подогрева воздуха и доли рециркулируемых газов и предварительного подогрева воздуха. Расчет в Excel прикладной задачи


Основным источником тепла, нагревающим земную поверхность и атмосферу, служит солнце. Другие источники – луна, звезды, разогретые недра Земли – поставляют столь малое количество тепла, что ими можно пренебречь.

Солнце излучает в мировое пространство колоссальную энергию в виде тепловых, световых, ультрафиолетовых и других лучей. Вся совокупность лучистой энергии Солнца называется солнечной радиацией. Земля получает ничтожную долю этой энергии – одну двухмиллиардную часть, которой, однако, достаточно не только для поддержания жизни, но и для осуществления экзогенных процессов в литосфере, физико-химических явлений в гидросфере и атмосфере.

Различают радиацию прямую, рассеянную и суммарную.

При ясной, безоблачной погоде поверхность Земли нагревается в основном прямой радиацией, которую мы ощущаем как теплые или горячие солнечные лучи.

Проходя через атмосферу, солнечные лучи отражаются от молекул воздуха, капелек воды, пылинок, отклоняются от прямолинейного пути и рассеиваются. Чем пасмурнее погода, тем плотнее облачность и тем большее количество радиации рассеивается в атмосфере. При сильной запыленности воздуха, например во время пыльных бурь или в промышленных центрах, рассеивание ослабляет радиацию на 40–45 %.

Значение рассеянной радиации в жизни Земли очень велико. Благодаря ей освещаются предметы, находящиеся в тени. Она же обусловливает цвет неба.

Интенсивность радиации зависит от угла падения солнечных лучей на земную поверхность. Когда солнце находится высоко над горизонтом, его лучи преодолевают атмосферу более коротким путем, следовательно, меньше рассеиваются и сильнее нагревают поверхность Земли. По этой причине в солнечную погоду утром и вечером всегда прохладнее, чем в полдень.

На распределение радиации на поверхности Земли огромное влияние оказывают ее шарообразность и наклон земной оси к плоскости орбиты. В экваториальных и тропических широтах солнце в течение всего года находится высоко над горизонтом, в средних широтах его высота меняется в зависимости от времени года, а в Арктике и Антарктике высоко над горизонтом оно не поднимается никогда. В результате в тропических широтах солнечные лучи рассеиваются меньше, а на единицу площади земной поверхности приходится их большее количество, чем в средних или высоких широтах. По этой причине количество радиации зависит от широты места: чем дальше от экватора, тем меньше ее поступает на земную поверхность.

Поступление лучистой энергии связано с годичным и суточным движением Земли. Так, в средних и высоких широтах ее количество зависит от времени года. На Северном полюсе, например, летом солнце не заходит за горизонт 186 дней, т. е. 6 месяцев, и количество поступающей радиации даже больше, чем на экваторе. Однако солнечные лучи имеют малый угол падения, и большая часть радиации рассеивается в атмосфере. В результате поверхность Земли нагревается незначительно.

Зимой солнце в Арктике находится за горизонтом, и прямая радиация на поверхность Земли не поступает.

На количество поступающей солнечной радиации влияет и рельеф земной поверхности. На склонах гор, холмов, оврагов и т. д., обращенных к солнцу, угол падения солнечных лучей увеличивается, и они сильнее нагреваются.

Совокупность всех этих факторов приводит к тому, что на земной поверхности нет места, где интенсивность радиации была бы постоянной.

Неодинаково происходит и нагревание суши и воды. Поверхность суши нагревается и охлаждается быстро. Вода же нагревается медленно, но зато дольше удерживает тепло. Объясняется это тем, что теплоемкость воды больше теплоемкости горных пород, слагающих сушу.

На суше солнечные лучи нагревают только поверхностный слой, а в прозрачной воде тепло проникает на значительную глубину, в результате чего нагревание происходит медленнее. На его скорость влияет и испарение, так как на него нужно много тепла. Вода остывает медленно, в основном потому, что объем прогреваемой воды во много раз больше объема нагревающейся суши; к тому же при ее охлаждении верхние, остывшие слои воды опускаются на дно, как более плотные и тяжелые, а на смену им из глубины водоема поднимается теплая вода.

Накопленное тепло вода расходует более равномерно. В результате море в среднем теплее суши, а колебания температуры воды никогда не бывают такими резкими, как колебания температуры суши.

Температура воздуха

Солнечные лучи, проходя через прозрачные тела, нагревают их очень слабо. По этой причине прямые солнечные лучи почти не нагревают воздух атмосферы, а нагревают поверхность Земли, от которой прилегающим слоям воздуха передается тепло. Нагреваясь, воздух становится более легким и поднимается вверх, где перемешивается с более холодным, в свою очередь нагревая его.

По мере поднятия вверх воздух охлаждается. На высоте 10 км температура постоянно держится на отметке 40–45 °C.

Понижение температуры воздуха с высотой – это общая закономерность. Однако нередко наблюдается и повышение температуры по мере поднятия вверх. Такое явление называют температурной инверсией, т. е. перестановкой температур.

Возникают инверсии либо при быстром охлаждении земной поверхности и прилегающего воздуха, либо, наоборот, при стекании тяжелого холодного воздуха по склонам гор в долины. Там этот воздух застаивается и вытесняет более теплый вверх по склонам.

В течение суток температура воздуха не остается постоянной, а непрерывно изменяется. Днем поверхность Земли нагревается и нагревает прилегающий слой воздуха. Ночью Земля излучает тепло, охлаждается, и происходит охлаждение воздуха. Наиболее низкие температуры наблюдаются не ночью, а перед восходом солнца, когда земная поверхность уже отдала все тепло. Аналогично этому наиболее высокие температуры воздуха устанавливаются не в полдень, а около 15 ч.

На экваторе суточный ход температур однообразен, днем и ночью они почти одинаковы. Очень незначительны суточные амплитуды на морях и у морских побережий. А вот в пустынях днем поверхность земли часто нагревается до 50–60 °C, а ночью нередко охлаждается до 0 °C. Таким образом, суточные амплитуды превышают здесь 50–60 °C.

В умеренных широтах наибольшее количество солнечной радиации поступает на Землю в дни летних солнцестояний, т. е. 22 июня в Северном полушарии и 21 декабря в Южном. Однако самым жарким месяцем является не июнь (декабрь), а июль (январь), так как в день солнцестояния огромное количество радиации расходуется на нагревание земной поверхности. В июле (январе) радиация уменьшается, но эта убыль компенсируется сильно нагретой земной поверхностью.

Аналогично этому самый холодный месяц не июнь (декабрь), а июль (январь).

На море, в связи с тем что вода более медленно охлаждается и нагревается, смещение температур еще больше. Здесь самый жаркий месяц август, а самый холодный – февраль в Северном полушарии и соответственно самый жаркий – февраль и самый холодный – август в Южном.

Годовая амплитуда температур в значительной степени зависит от широты места. Так, на экваторе амплитуда в течение года остается почти постоянной и составляет 22–23 °C. Самые высокие годовые амплитуды характерны для территорий, расположенных в средних широтах в глубине континентов.

Любая местность характеризуется также абсолютными и средними температурами. Абсолютные температуры устанавливают путем многолетних наблюдений на метеостанциях. Так, самое жаркое (+58 °C) место на Земле находится в Ливийской пустыне; самое холодное (-89,2 °C) – в Антарктиде на станции «Восток». В Северном полушарии самая низкая (-70,2 °C) температура отмечена в поселке Оймякон в Восточной Сибири.

Средние температуры определяют как среднеарифметическое нескольких показателей термометра. Так, чтобы определить среднесуточную температуру, производят измерения в 1; 7; 13 и 19 ч, т. е. 4 раза в сутки. Из полученных цифр находят среднеарифметическую величину, которая и будет среднесуточной температурой данной местности. Затем находят среднемесячные и среднегодовые температуры как среднеарифметическое среднесуточных и среднемесячных.

На карте можно обозначить точки с одинаковыми значениями температур и провести линии, соединяющие их. Эти линии называют изотермами. Наиболее показательны изотермы января и июля, т. е. самого холодного и самого теплого месяца в году. По изотермам можно определить, как распределяется тепло на Земле. При этом прослеживаются отчетливо выраженные закономерности.

1. Самые высокие температуры наблюдаются не на экваторе, а в тропических и субтропических пустынях, где преобладает прямая радиация.

2. В обоих полушариях температуры понижаются от тропических широт к полюсам.

3. В связи с преобладанием моря над сушей ход изотерм в Южном полушарии более плавный, а амплитуды температур между самым жарким и самым холодным месяцем меньше, чем в Северном.

Расположение изотерм позволяет выделить 7 тепловых поясов:

1 жаркий, расположенный между годовыми изотермами 20 °C в Северном и Южном полушариях;

2 умеренных, заключенных между изотермами 20 и 10 °C самых теплых месяцев, т. е. июня и января;

2 холодных, расположенных между изотермами 10 и 0 °C также самых теплых месяцев;

2 области вечного мороза, в которых температура самого теплого месяца ниже 0 °C.

Границы поясов освещенности, проходящие по тропикам и полярным кругам, не совпадают с границами тепловых поясов.



Проходят через прозрачную атмосферу, не нагревая ее, они достигают земной поверхности, нагревают ее, а от нее в последующем нагревается воздух.

Степень нагрева поверхности, а значит и воздуха, зависят, прежде всего, от широты местности.

Но в каждой конкретной точке она (t о) будет определяться также целым рядом факторов, среди которых основными являются:

А: высота над уровнем моря;

Б: подстилающая поверхность;

В: удаленность от побережий океанов и морей.

А – Поскольку нагревание воздуха происходит от земной поверхности, то чем меньше абсолютные высоты местности, тем выше температура воздуха (на одной широте). В условиях ненасыщенного водяными парами воздуха наблюдается закономерность: при подъеме на каждые 100 метров высоты температура (t о) уменьшается на 0,6 о С.

Б – Качественные характеристики поверхности.

Б 1 – разные по цвету и структуре поверхности по разному поглощают и отражают солнечные лучи. Максимальная отражательная способность характерна для снега и льда, минимальная для темно окрашенных почв и горных пород.

Освещение Земли солнечными лучами в дни солнцестояний и равноденствий.

Б 2 – разные поверхности имеют разную теплоемкость и теплоотдачу. Так водная масса Мирового океана, занимающего 2/3 поверхности Земли, из-за высокой теплоемкости очень медленно нагревается и очень медленно охлаждается. Суша быстро нагревается и быстро охлаждается т.е., чтобы нагреть до одинаковой t о 1 м 2 суши и 1 м 2 водной поверхности, надо затратить разное количество энергии.

В – от побережий в глубь материков количество водного пара в воздухе уменьшается. Чем более прозрачна атмосфера, тем меньше рассеивается в ней солнечных лучей, и все солнечные лучи достигают поверхности Земли. При наличии большого количества водяного пара в воздухе, капельки воды отражают, рассеивают, поглощают солнечные лучи и далеко не все они достигаются поверхности планеты, нагревание ее при этом уменьшается.

Самые высокие температуры воздуха зафиксированы в районах тропических пустынь. В центральных районах Сахары почти 4 месяца t о воздуха в тени составляет более 40 о С. В то же время на экваторе, где угол падения солнечных лучей самый большой, температура не бывает выше +26 о С.

С другой стороны, Земля как нагретое тело излучает энергию в космос в основном в длинноволновом инфракрасном спектре. Если земная поверхность укутана «одеялом» облаков, то не все инфракрасные лучи уходят с планеты, так как облака их задерживают, отражая обратно к земной поверхности.

При ясном небе, когда водяных паров в атмосфере мало, инфракрасные лучи, испускаемые планетой свободно уходят в космос, при этом происходит выхолаживание земной поверхности, которая остывает и тем самым снижается температура воздуха.

Литература

  1. Зубащенко Е.М. Региональная физическая география. Климаты Земли: учебно-методическое пособие. Часть 1. / Е.М. Зубащенко, В.И. Шмыков, А.Я. Немыкин, Н.В. Полякова. – Воронеж: ВГПУ, 2007. – 183 с.

Нагревание атмосферы (температура воздуха).

Атмосфера получает больше тепла от подстилающей земной поверхности, чем непосредственно от Солнца. Тепло передается атмосфере посредством молекулярной теплопроводности ,конвекции , выделения удельной теплоты парообразования при конденсации водяного пара в атмосфере. Поэтому температура в тропосфере с высотой обычно понижается. Но если поверхность отдает воздуху больше тепла, чем за то же время получает, она охлаждается, от нее охлаждается и воздух над ней. В этом случае температура воздуха с высотой, наоборот, повышается. Такое положение называется температурной инверсией . Ее можно наблюдать летом в ночное время, зимой - над снежной поверхностью. Температурная инверсия обычна в полярных областях. Причиной инверсии, кроме охлаждения поверхности, может быть вытеснение теплого воздуха подтекающим под него холодным или стекание холодного воздуха на дно межгорных котловин.

В спокойной тропосфере температура с высотой в среднем понижается на 0,6° на каждые 100 м. При поднятии сухого воздуха этот показатель увеличивается и может достигать 1° на 100 м., а при поднятии влажного – уменьшается. Это объясняется тем, что поднимающийся воздух расширяется и на это затрачивается энергия (тепло), а при поднятии влажного воздуха происходит конденсация водяного пара, сопровождающаяся выделением тепла.

Понижение температуры поднимающегося воздуха - главная причина образования облаков . Опускающийся воздух, попадая под большое давление, сжимается, и температура его повышается.

Температура воздуха периодически изменяется в течение суток и в течение года.

В суточном ее ходе наблюдается один максимум (после полудня) и один минимум (перед восходом солнца). От экватора к полюсам суточные амплитуды колебания температуры убывают. Но при этом над сушей они всегда больше, чем над океаном.

В годовом ходе температуры воздуха на экваторе - два максимума (после равноденствий) и два минимума (после солнцестояний). В тропических, умеренных и полярных широтах - по одному максимуму и по одному минимуму. Амплитуды годовых колебаний температуры воздуха с увеличением широты возрастают. На экваторе они меньше суточных: 1-2°С над океаном и до 5°С - над сушей. В тропических широтах - над океаном - 5°С, над сушей - до 15°С. В умеренных широтах от 10-15°С над океаном до 60°С и более над сушей. В полярных широтах преобладает отрицательная температура, ее годовые колебания достигают 30-40°С.

Правильный суточный и годовой ход температуры воздуха, обусловленный изменениями высоты Солнца над горизонтом и продолжительностью дня, осложняется непериодическими изменениями, вызываемыми перемещениями масс воздуха, имеющих разную температуру. Общая закономерность распределения температуры в нижнем слое тропосферы -ее понижение в направлении от экватора к полюсам.

Если бы средняя годовая температура воздуха зависела только от широты, ее распределение в Северном и Южном полушариях было бы одинаковым. В действительности же на ее распределение существенно влияют различия в характере подстилающей поверхности и перенос тепла из низких широт в высокие.

Вследствие переноса тепла на экваторе температура воздуха ниже, а на полюсах выше, чем была бы без этого процесса. Южное полушарие холоднее Северного главным образом из-за покрытой льдом и снегом суши у Южного полюса. Средняя температура воздуха в нижнем двухметровом слое для всей Земли +14°С, что соответствует средней годовой температуре воздуха на 40° с.ш.

ЗАВИСИМОСТЬ ТЕМПЕРАТУРЫ ВОЗДУХА ОТ ГЕОГРАФИЧЕСКОЙ ШИРОТЫ

Распределение температуры воздуха у земной поверхности показывают посредством изотерм - линий, соединяющих места с одинаковой температурой. Изотермы не совпадают с параллелями. Они изгибаются, переходя с материка на океан и наоборот.

Давление атмосферы

Воздух имеет массу и вес, поэтому оказывает давление на соприкасающуюся с ним поверхность. Давление, оказываемое воздухом на земную поверхность и все, находящиеся на ней предметы, называется атмосферным давлением . Оно равно весу вышележащего столба воздуха и зависят от температуры воздуха: чем выше температура, тем ниже давление.

Давление атмосферы на подстилающую поверхность составляет в среднем 1,033 г на 1 см 2 (больше 10 т на м 2 ). Измеряется давление в миллиметрах ртутного столба, миллибарах (1 мб = 0,75 мм рт. ст.) и в гектопаскалях (1 гПа = 1 мб). С высотой давление понижается: В нижнем слое тропосферы до высоты 1 км оно понижается на 1 мм рт. ст. на каждые 10 м. Чем выше, тем давление понижается медленнее. Нормальное давление на уровне океана – 760 мм. Рт. ст.

Общее распределение давления да поверхности Земли имеет зональный характер:

Время года

Над материком

Над океаном

На экваториальных широтах

На тропических широтах

Низкое

Высокое

На умеренных широтах

Высокое

Низкое

Низкое

На полярных широтах

Таким образом, и зимой и летом, и над материками и над океаном чередуются зоны высокого и низкого давления. Распределение давления хорошо видно на картах изобар января и июля. Изобары - линии, соединяющие места с одинаковым давлением. Чем ближе они располагаются друг к другу, тем быстрее изменяется давление с расстоянием. Величина изменения давления на единицу расстояния (100 км) называется барическим градиентом .

Изменение давления объясняется перемещением воздуха. Оно повышается там, где воздуха становится больше, и понижается там, откуда воздух уходит. Главная причина перемещения воздуха - его нагревание и охлаждение от подстилающей поверхности . Нагреваясь от поверхности, воздух расширяется и устремляется вверх. Достигнув высоты, на которой его плотность оказывается больше плотности окружающего воздуха, он растекается в стороны. Поэтому давление на теплую поверхность понижается (экваториальные широты, материковая часть тропических широт летом). Но одновременно на соседние участки оно увеличивается, хотя температура там не изменялась (тропические широты зимой).

Над холодной поверхностью воздух охлаждается и уплотняется, прижимаясь к поверхности (полярные широты, материковая часть умеренных широт зимой). Наверху его плотность уменьшается, и сюда приходит воздух со стороны. Количество его над холодной поверхностью увеличивается, давление на нее возрастает. Одновременно там, откуда воздух ушел, давление уменьшается без изменения температуры. Нагревание и охлаждение воздуха от поверхности сопровождается его перераспределением и изменением давления.

В экваториальных широтах давление всегда пониженное . Это объясняется тем, что нагревающийся от поверхности воздух поднимается и уходит в сторону тропических широт, создавая там повышенное давление.

Над холодной поверхностью в Арктике и Антарктиде давление повышенное . Его создает воздух, приходящий из умеренных широт на место уплотнившегося холодного воздуха. Отток воздуха в полярные широты - причина понижения давления в умеренных широтах.

В результате формируются пояса пониженного (экваториальный и умеренные) и повышенного давления (тропические и полярные). В зависимости от сезона они несколько смещаются в сторону летнего полушария («вслед за Солнцем»).

Полярные области высокого давления зимой расширяются, летом сокращаются, но существуют весь год. Пояса пониженного давления весь год сохраняются близ экватора и в умеренных широтах Южного полушария.

Зимой в умеренных широтах Северного полушария давление над материками сильно повышается и пояс низкого давления «разрывается». Замкнутые области пониженного давления сохраняются только над океанами - Исландский и Алеутский минимумы . Над материками, наоборот, образуются зимние максимумы :Азиатский (Сибирский ) и Северо-Американский . Летом в умеренных широтах Северного полушария, пояс пониженного давления восстанавливается.

Огромная область пониженного давления с центром в тропических широтах формируется летом над Азией - Азиатский минимум . В тропических широтах материки всегда нагреты несколько сильнее, чем океаны, и давление над ними ниже. Поэтому над океанами существуют субтропические максимумы :Северо-Атлантический (Азорский), Северо-Тихоокеанский, Южно-Атлантический, Южно-Тихоокеанский и Южно-Индийский.

Таким образом, из-за разного нагрева и остывания материковой и водной поверхности (материковая поверхность быстрее нагревается и быстрее остывает), наличия теплых и холодных течений и других причин на Земле кроме поясов атмосферного давления могут возникать замкнутые области пониженного и повышенного давления.

Изменение рециркуляции дымовых газов. Рециркуляция га­зов широко применяется для расширения диапазона регулирова­ния температуры перегретого пара и позволяет поддержать тем­пературу перегрева пара и при малых нагрузках котлоагрегата. В последнее время рециркуляция дымовых газов получает так­же распространение как метод снижения образования NО х. Приме­няется также рециркуляция дымовых газов в воздушный поток перед горелками, что является более эффективным с точки зре­ния подавления образования N0 x .

Ввод относительно холодных рециркулируемых газов в ниж­нюю часть топки приводит к уменьшению тепловосприятия ра­диационных поверхностей нагрева и к возрастанию температу­ры газов па выходе из топки и в конвективных газоходах, в том числе температуры уходящих газов. Увеличение общего расхода дымовых газов на участке газового тракта до отбора газов на рециркуляцию способствует повышению коэффициентов тепло­передачи и тепловосприятия конвективных поверхностей нагрева.

Рис. 2.29. Изменение температуры пара (кривая 1), темпе­ратуры горячего воздуха (кривая 2) и потерь с уходящими газами (кривая 3) в зависимости от доли рециркуляции ды­мовых газов г.

На рис. 2.29 приведены характеристики котлоагрегата ТП-230-2 при изменении доли рециркуляции газов в нижнюю часть топки. Здесь доля рециркуляции

где V рц - объем газов, отбираемых па рециркуляцию; V r - объем газов в месте отбора на рециркуляцию без учета V рц. Как видно, увеличение доли рециркуляции на каждые 10% приводит к повы­шению температуры уходящих газов на 3-4°С, Vr - на 0,2%, температуры пара - на 15° С, причем характер зависимости почти линейный. Эти соотношения не являются однозначными для всех котлоагрегатов. Их величина зависит от температуры рециркулируемых газов (места забора газов) и метода ввода их. Сброс рециркулируемых газов в верхнюю часть топки не ока­зывает влияния на работу топки, но приводит к значительному снижению температуры газов в области пароперегревателя и как следствие к снижению температуры перегретого пара, хотя объем продуктов сгорания увеличивается. Сброс газов в верхнюю часть топки может быть использован для защиты пароперегревателя от воздействия недопустимо высокой температуры газов и уменьшения шлакования пароперегревателя.

Разумеется, применение рециркуляции газов приводит к сни­жению не только к.п.д. брутто, но и к.п.д. нетто котлоагрегата, так как вызывает увеличение расхода электроэнергии на соб­ственные нужды.

Рис. 2.30. Зависимость потерь тепла с механическим недожегом от температуры горячего воздуха.

Изменение температуры горячего воздуха. Изменение тем­пературы горячего воздуха является результатом изменения режима работы воздухоподогревателя вследствие влияния таких факторов, как изменение температурного напора, коэффициента теплопередачи, расхода газов или воздуха. Повышение темпера­туры горячего воздуха увеличивает, хотя и незначительно, уро­вень тепловыделения в топке. Величина температуры горячего воздуха оказывает заметное влияние на характеристики котло-агрегатов, работающих на топливе с малым выходом летучих. Понижение ^ г.в в этом случае ухудшает условия воспламенения топлива, режим сушки и размола топлива, приводит к понижению температуры аэросмеси на входе в горелки, что может вызвать рост потерь с механическим недожогом (см. рис. 2.30).

. Изменение температуры предварительного подогрева воз­духа. Предварительный подогрев воздуха перед воздухоподогре­вателем применяется для повышения температуры стенки его поверхностей нагрева с целью снижения коррозионного воздей­ствия па них дымовых газов, в особенности при сжигании высокосернистых топлив. Согласно ПТЭ , при сжигании сернистого мазута температура воздуха перед трубчатыми воздухоподогревателями должна быть не ниже 110° С, а перед регенеративными - не ниже 70 е С.

Предварительный подогрев воздуха может осуществляться за счет рециркуляции горячего воздуха на вход дутьевых венти­ляторов, однако при этом происходит снижение экономичности котлоагрегата за счет увеличения расхода электроэнергии на дутье и роста температуры уходящих газов. Поэтому подогрев воздуха выше 50°С целесообразно осуществлять в калориферах, работающих на отборном паре или горячей воде.

Предварительный подогрев воздуха влечет за собой уменьше­ние тепловосприятия воздухоподогревателя вследствие снижения температурного напора, температура уходящих газов и потеря тепла при этом повышаются. Предварительный подогрев воздуха требует также дополнительных затрат электроэнергии на подачу воздуха в воздухоподогреватель. В зависимости от уровня и способа предварительного подогрева воздуха на каждые 10° С предварительного подогрева воздуха к.п.д. брутто изменяется примерно на 0,15-0,25%, а температура уходящих газов - на 3-4,5° С.

Так как доля тепла, отбираемого для предварительного подо­грева воздуха, по отношению к теплопроизводительности котлоагрегатов довольно велика (2-3,5%), выбор оптимальной схе­мы подогрева воздуха имеет большое значение.



Холодный воздух

Рис. 2.31. Схема двухступенчатого подогрева воздуха в калориферах сетевой водой и отборным паром:

1 - сетевые подогреватели; 2 - первая ступень подогрева воздуха сетевой водой отопительной системы; 3 - вторая ступень подогрева воздуха пзром; 4 - насос подачи обратной сетевой воды на калориферы; 5 - сетевая вода для подогре­ва воздуха (схема для летнего периода); 6 - сетевая вода для подогрева воздуха (схема для зимнего периода).

При конструировании системы воздушного отопления используются уже готовые калориферные установки.

Для правильного подбора необходимого оборудования достаточно знать: необходимую мощность калорифера, который впоследствии будет монтироваться в системе отопления приточной вентиляции, температуру воздуха на его выходе из калориферной установки и расход теплоносителя.

Для упрощения производимых расчетов вашему вниманию представлен онлайн-калькулятор расчета основных данных для правильного подбора калорифера.

  1. Тепловую мощность калорифера кВт. В поля калькулятора следует ввести исходные данные об объеме проходящего через калорифер воздуха, данные о температуре поступаемого на вход воздуха, необходимую температуру воздушного потока на выходе из калорифера.
  2. Температуру воздуха на выходе . В соответствующие поля следует ввести исходные данные об объеме нагреваемого воздуха, температуре воздушного потока на входе в установку и полученную при первом расчете тепловую мощность калорифера.
  3. Расход теплоносителя . Для этого в поля онлайн-калькулятора следует ввести исходные данные: о тепловой мощности установки, полученные при первом подсчете, о температуре теплоносителя подаваемого на вход в калорифер, и значение температуры на выходе из устройства.

Расчет мощности калорифера