Нижнее белье

Что такое глагол важная информация. Что такое глагол в русском языке? Синтаксическая роль глагола

Самым главным явлением, постоянно изучаемым физиками, является движение. Электромагнитные явления, законы механики, термодинамические и квантовые процессы – все это широкий спектр изучаемых физикой фрагментов мироздания. И все эти процессы сводятся, так или иначе, к одному – к .

Вконтакте

Все во Вселенной движется. Гравитация – привычное явление для всех людей с самого детства, мы родились в гравитационном поле нашей планеты, это физическое явление воспринимается нами на самом глубоком интуитивном уровне и, казалось бы, даже не требует изучения.

Но, увы, вопрос, почему и каким образом все тела притягиваются друг к другу , остается и на сегодняшний день не до конца раскрытым, хотя и изучен вдоль и поперек.

В этой статье мы рассмотрим, что такое всемирное притяжение по Ньютону – классическую теорию гравитации. Однако прежде чем перейти к формулам и примерам, расскажем о сути проблемы притяжения и дадим ему определение.

Быть может, изучение гравитации стало началом натуральной философии (науки о понимании сути вещей), быть может, натуральная философия породила вопрос о сущности гравитации, но, так или иначе, вопросом тяготения тел заинтересовались еще в Древней Греции .

Движение понималось как суть чувственной характеристики тела, а точнее, тело двигалось, пока наблюдатель это видит. Если мы не можем явление измерить, взвесить, ощутить, значит ли это, что этого явления не существует? Естественно, не значит. И с тех пор, как Аристотель понял это, начались размышления о сути гравитации.

Как оказалось в наши дни, спустя многие десятки веков, гравитация является основой не только земного притяжения и притяжения нашей планеты к , но и основой зарождения Вселенной и почти всех имеющихся элементарных частиц.

Задача движения

Проведем мысленный эксперимент. Возьмем в левую руку небольшой шарик. В правую возьмем такой же. Отпустим правый шарик, и он начнет падать вниз. Левый при этом остается в руке, он по-прежнему недвижим.

Остановим мысленно ход времени. Падающий правый шарик «зависает» в воздухе, левый все также остается в руке. Правый шарик наделен «энергией» движения, левый – нет. Но в чем глубокая, осмысленная разница между ними?

Где, в какой части падающего шарика прописано, что он должен двигаться? У него такая же масса, такой же объем. Он обладает такими же атомами, и они ничем не отличаются от атомов покоящегося шарика. Шарик обладает ? Да, это правильный ответ, но откуда шарику известно, что обладает потенциальной энергией, где это зафиксировано в нем?

Именно эту задачу ставили перед собой Аристотель, Ньютон и Альберт Эйнштейн. И все три гениальных мыслителя отчасти решили для себя эту проблему, но на сегодняшний день существует ряд вопросов, требующих разрешения.

Гравитация Ньютона

В 1666 году величайшим английским физиком и механиком И. Ньютоном открыт закон, способный количественно посчитать силу, благодаря которой вся материя во Вселенной стремится друг к другу. Это явление получило название всемирное тяготение. Когда вас просят: «Сформулируйте закон всемирного тяготения», ваш ответ должен звучать так:

Сила гравитационного взаимодействия, способствующая притяжению двух тел, находится в прямой пропорциональной связи с массами этих тел и в обратной пропорциональной связи с расстоянием между ними.

Важно! В законе притяжения Ньютона используется термин «расстояние». Под этим термином следует понимать не дистанцию между поверхностями тел, а расстояние между их центрами тяжести. К примеру, если два шара радиусами r1 и r2 лежат друг на друге, то дистанция между их поверхностями равна нулю, однако сила притяжения есть. Все дело в том, что расстояние между их центрами r1+r2 отлично от нуля. В космических масштабах это уточнение не суть важно, но для спутника на орбите данная дистанция равна высоте над поверхностью плюс радиус нашей планеты. Расстояние между Землей и Луной также измеряется как расстояние между их центрами, а не поверхностями.

Для закона тяготения формула выглядит следующим образом:

,

  • F – сила притяжения,
  • – массы,
  • r – расстояние,
  • G – гравитационная постоянная, равная 6,67·10−11 м³/(кг·с²).

Что же представляет собой вес, если только что мы рассмотрели силу притяжения?

Сила является векторной величиной, однако в законе всемирного тяготения она традиционно записана как скаляр. В векторной картине закон будет выглядеть таким образом:

.

Но это не означает, что сила обратно пропорциональна кубу дистанции между центрами. Отношение следует воспринимать как единичный вектор, направленный от одного центра к другому:

.

Закон гравитационного взаимодействия

Вес и гравитация

Рассмотрев закон гравитации, можно понять, что нет ничего удивительного в том, что лично мы ощущаем притяжение Солнца намного слабее, чем земное . Массивное Солнце хоть и имеет большую массу, однако оно очень далеко от нас. тоже далеко от Солнца, однако она притягивается к нему, так как обладает большой массой. Каким образом найти силу притяжения двух тел, а именно как вычислить силу тяготения Солнца, Земли и нас с вами – с этим вопросом мы разберемся чуть позже.

Насколько нам известно, сила тяжести равна:

где m – наша масса, а g – ускорение свободного падения Земли (9,81 м/с 2).

Важно! Не бывает двух, трех, десяти видов сил притяжения. Гравитация – единственная сила, дающая количественную характеристику притяжения. Вес (P = mg) и сила гравитации – одно и то же.

Если m – наша масса, M – масса земного шара, R – его радиус, то гравитационная сила, действующая на нас, равна:

Таким образом, поскольку F = mg:

.

Массы m сокращаются, и остается выражение для ускорения свободного падения:

Как видим, ускорение свободного падения – действительно постоянная величина, поскольку в ее формулу входят величины постоянные — радиус, масса Земли и гравитационная постоянная. Подставив значения этих констант, мы убедимся, что ускорение свободного падения равно 9,81 м/с 2 .

На разных широтах радиус планеты несколько отличается, поскольку Земля все-таки не идеальный шар. Из-за этого ускорение свободного падения в отдельных точках земного шара разное.

Вернемся к притяжению Земли и Солнца. Постараемся на примере доказать, что земной шар притягивает нас с вами сильнее, чем Солнце.

Примем для удобства массу человека: m = 100 кг. Тогда:

  • Расстояние между человеком и земным шаром равно радиусу планеты: R = 6,4∙10 6 м.
  • Масса Земли равна: M ≈ 6∙10 24 кг.
  • Масса Солнца равна: Mc ≈ 2∙10 30 кг.
  • Дистанция между нашей планетой и Солнцем (между Солнцем и человеком): r=15∙10 10 м.

Гравитационное притяжение между человеком и Землей:

Данный результат довольно очевиден из более простого выражения для веса (P = mg).

Сила гравитационного притяжения между человеком и Солнцем:

Как видим, наша планета притягивает нас почти в 2000 раз сильнее.

Как найти силу притяжения между Землей и Солнцем? Следующим образом:

Теперь мы видим, что Солнце притягивает нашу планету более чем в миллиард миллиардов раз сильнее, чем планета притягивает нас с вами.

Первая космическая скорость

После того как Исаак Ньютон открыл закон всемирного тяготения, ему стало интересно, с какой скоростью нужно бросить тело, чтобы оно, преодолев гравитационное поле, навсегда покинуло земной шар.

Правда, он представлял себе это несколько иначе, в его понимании была не вертикально стоящая ракета, устремленная в небо, а тело, которое горизонтально совершает прыжок с вершины горы. Это была логичная иллюстрация, поскольку на вершине горы сила притяжения немного меньше .

Так, на вершине Эвереста ускорение свободного падения будет равно не привычные 9,8 м/с 2 , а почти м/с 2 . Именно по этой причине там настолько разряженный , частицы воздуха уже не так привязаны к гравитации, как те, которые «упали» к поверхности.

Постараемся узнать, что такое космическая скорость.

Первая космическая скорость v1 – это такая скорость, при которой тело покинет поверхность Земли (или другой планеты) и перейдет на круговую орбиту.

Постараемся узнать численной значение этой величины для нашей планеты.

Запишем второй закон Ньютона для тела, которое вращается вокруг планеты по круговой орбите:

,

где h — высота тела над поверхностью, R — радиус Земли.

На орбите на тело действует центробежное ускорение , таким образом:

.

Массы сокращаются, получаем:

,

Данная скорость называется первой космической скоростью:

Как можно заметить, космическая скорость абсолютно не зависит от массы тела. Таким образом, любой предмет, разогнанный до скорости 7,9 км/с, покинет нашу планету и перейдет на ее орбиту.

Первая космическая скорость

Вторая космическая скорость

Однако, даже разогнав тело до первой космической скорости, нам не удастся полностью разорвать его гравитационную связь с Землей. Для этого и нужна вторая космическая скорость. При достижении этой скорости тело покидает гравитационное поле планеты и все возможные замкнутые орбиты.

Важно! По ошибке часто считается, что для того чтобы попасть на Луну, космонавтам приходилось достигать второй космической скорости, ведь нужно было сперва «разъединиться» с гравитационным полем планеты. Это не так: пара «Земля — Луна» находятся в гравитационном поле Земли. Их общий центр тяжести находится внутри земного шара.

Для того чтобы найти эту скорость, поставим задачу немного иначе. Допустим, тело летит из бесконечности на планету. Вопрос: какая скорость будет достигнута на поверхности при приземлении (без учета атмосферы, разумеется)? Именно такая скорость и потребуется телу, чтобы покинуть планету.

Закон всемирного тяготения. Физика 9 класс

Закон Всемирного тяготения.

Вывод

Мы с вами узнали, что хотя гравитация является основной силой во Вселенной, многие причины этого явления до сих пор остались загадкой. Мы узнали, что такое сила всемирного тяготения Ньютона, научились считать ее для различных тел, а также изучили некоторые полезные следствия, которые вытекают из такого явления, как всемирный закон тяготения.

В природе известны лишь четыре основные фундаментальные силы (их еще называют основными взаимодействиями ) - гравитационное взаимодействие, электромагнитное взаимодействие, сильное взаимодействие и слабое взаимодействие .

Гравитационное взаимодействие является самым слабым из всех. Гравитационные силы связывают воедино части земного шара и это же взаимодействие определяет крупномасштабные события во Вселенной .

Электромагнитное взаимодействие удерживает электроны в атомах и связывает атомы в молекулы. Частным проявлением этих сил являются кулоновские силы , действующие между неподвижными электрическими зарядами.

Сильное взаимодействие связывает нуклоны в ядрах. Это взаимодействие является самым сильным, но действует оно только на весьма коротких расстояниях.

Слабое взаимодействие действует между элементарными частицами и имеет очень малую дальность. Оно проявляется при бета-распаде.

4.1.Закон всемирного тяготения Ньютона

Между двумя материальными точками действует сила взаимного притяжения, прямо пропорциональная произведению масс этих точек (m и М) и обратно пропорциональная квадрату расстояния между ними (r 2 ) и направленная вдоль прямой, проходящей через взаимодействующие тела F = (GmM/r 2)r o ,(1)

здесь r o - единичный вектор, проведенный в направлении действия силы F (рис.1а).

Эта сила называется гравитационной силой (или силой всемирного тяготения ). Гравитационные силы всегда являются силами притяжения . Сила взаимодействия между двумя телами не зависит от среды, в которой находятся тела .

g 1 g 2

Рис.1а Рис.1b Рис.1с

Постоянная G называется гравитационной постоянной . Ее значение установлено опытным путем: G = 6.6720 . 10 -11 Н. м 2 /кг 2 - т.е. два точечных тела массой по 1кг каждое, находящихся на расстоянии 1 м друг от друга, притягиваются с силой 6.6720 . 10 -11 Н. Очень малая величина G как раз и позволяет говорить о слабости гравитационных сил - их следует принимать во внимание только в случае больших масс.

Массы, входящие в уравнение (1), называются гравитационными массами . Этим подчеркивается, что в принципе массы, входящие во второй закон Ньютона (F =m ин a )и в закон всемирного тяготения (F =(Gm гр M гр /r 2)r o ), имеют различную природу. Однако установлено, что отношение m гр / m ин для всех тел одинаково с относительной погрешностью до 10 -10 .

4.2.Гравитационное поле (поле тяготения) материальной точки

Считается, что гравитационное взаимодействие осуществляется с помощью гравитационного поля (поля тяготения) , которое порождается самими телами . Вводится две характеристики этого поля: векторная - и скалярная - потенциал гравитационного поля .

4.2.1.Напряженность гравитационного поля

Пусть имеем материальную точку с массой М. Считается, что вокруг этой массы возникает гравитационное поле. Силовой характеристикой такого поля является напряженность гравитационного поля g , которая определяется из закона всемирного тяготения g = (GM/r 2)r o ,(2)

где r o - единичный вектор, проведенный из материальной точки в направлении действия гравитационной силы. Напряженность гравитационного поля g есть векторная величина и является ускорением, получаемым точечной массой m, внесенной в гравитационное поле, созданным точечной массой М. Действительно, сравнивая (1) и (2), получаем для случая равенства гравитационной и инертной масс F =mg.

Подчеркнем, что величина и направление ускорения, получаемое телом, внесенным в гравитационное поле, не зависит от величины массы внесенного тела . Поскольку основной задачей динамики является определение величины ускорения, получаемого телом под действием внешних сил, то, следовательно, напряженность гравитационного поля полностью и однозначно определяет силовые характеристики гравитационного поля . Зависимость g(r) приведена на рис.2a.

Рис.2а Рис.2b Рис.2с

Поле называется центральным , если во всех точках поля векторы напряженности направлены вдоль прямых, которые пересекаются в одной точка, неподвижной по отношению к какой-либо инерциальной системе отсчета . В частности, гравитационное поле материальной точки является центральным: во всех точках поля векторы g и F =mg , действующие на тело, внесенное в гравитационное поле, направлены радиально от массы М, создающей поле, к точечной массе m (рис.1b).

Закон всемирного тяготения в форме (1) установлен для тел, принимаемых за материальные точки, т.е. для таких тел, размеры которых малы по сравнению с расстоянием между ними. Если же размерами тел пренебречь нельзя, то тела следует разбить на точечные элементы, по формуле (1) подсчитать силы притяжения между всеми попарно взятыми элементами и затем геометрически сложить. Напряженность гравитационного поля системы, состоящей из материальных точек с массами М 1 , М 2 , ..., М n , равна сумме напряженностей полей от каждой из этих масс в отдельности (принцип суперпозиции гравитационных полей ): g =g i , где g i = (GМ i /r i 2)r o i - напряженность поля одной массы М i .

Графическое изображение гравитационного поля с помощью векторов напряженности g в различных точках поля очень неудобно: для систем, состоящих из многих материальных точек, вектора напряженности накладываются друг на друга и получается весьма запутанная картина. Поэтому для графического изображения гравитационного поля используют силовые линии (линии напряженности) , которые проводят таким образом, что вектор напряженности направлен по касательной к силовой линии . Линии напряженности считаются направленными так же, как вектор g (рис.1с), т.е. силовые линии оканчиваются на материальной точке . Так как в каждой точке пространства вектор напряженности имеет лишь одно направление , то линии напряженности никогда не пересекаются . Для материальной точки силовые линии представляют собой радиальные прямые, входящие в точку (рис.1b).

Чтобы с помощью линий напряженности можно было характеризовать не только направление, но и значение напряженности поля, эти линии проводят с определенной густотой: число линий напряженности, пронизывающих единицу площади поверхности, перпендикулярную линиям напряженности, должно быть равно модулю вектор g .

На вопрос «Что такое сила?» физика отвечает так: «Сила есть мера взаимодействия вещественных тел между собой или между телами и другими материальными объектами - физическими полями». Все силы в природе могут быть отнесены к четырем фундаментальным видам взаимодействий: сильному, слабому, электромагнитному и гравитационному. Наша статья рассказывает о том, что представляют собой гравитационные силы - мера последнего и, пожалуй, наиболее широко распространенного в природе вида этих взаимодействий.

Начнем с притяжения земли

Всем живущим известно, что существует сила, которая притягивает объекты к земле. Она обычно именуется гравитацией, силой тяжести или земным притяжением. Благодаря ее наличию у человека возникли понятия «верх» и «низ», определяющие направление движения или расположения чего-либо относительно земной поверхности. Так в частном случае, на поверхности земли или вблизи нее, проявляют себя гравитационные силы, которые притягивают объекты, обладающие массой, друг к другу, проявляя свое действие на любых как самых малых, так и очень больших, даже по космическим меркам, расстояниях.

Сила тяжести и третий закон Ньютона

Как известно, любая сила, если она рассматривается как мера взаимодействия физических тел, всегда приложена к какому-нибудь из них. Так и в гравитационном взаимодействии тел друг с другом, каждое из них испытывает такие виды гравитационных сил, которые вызваны влиянием каждого из них. Если тел всего два (предполагается, что действием всех других можно пренебречь), то каждое из них по третьему закону Ньютона будет притягивать другое тело с одинаковой силой. Так Луна и Земля притягивают друг друга, следствием чего являются приливы и отливы земных морей.

Каждая планета в Солнечной системе испытывает сразу несколько сил притяжения со стороны Солнца и других планет. Конечно, определяет форму и размеры ее орбиты именно сила притяжения Солнца, но и влияние остальных небесных тел астрономы учитывают в своих расчетах траекторий их движения.

Что быстрее упадет на землю с высоты?

Главной особенностью этой силы является то, что все объекты падают на землю с одной скоростью, независимо от их массы. Когда-то, вплоть до 16-го ст., считалось, что все наоборот - более тяжелые тела должны падать быстрее, чем легкие. Чтобы развеять это заблуждение Галилео Галилею пришлось выполнить свой знаменитый опыт по одновременному сбрасыванию двух пушечных ядер разного веса с наклонной Пизанской башни. Вопреки ожиданиям свидетелей эксперимента оба ядра достигли поверхности одновременно. Сегодня каждый школьник знает, что это произошло благодаря тому, что сила тяжести сообщает любому телу одно и то же ускорение свободного падения g = 9,81 м/с 2 независимо от массы m этого тела, а величина ее по второму закону Ньютона равна F = mg.

Гравитационные силы на Луне и на других планетах имеют разные значения этого ускорения. Однако характер действия силы тяжести на них такой же.

Сила тяжести и вес тела

Если первая сила приложена непосредственно к самому телу, то вторая к его опоре или подвесу. В этой ситуации на тела со стороны опор и подвесов всегда действуют силы упругости. Гравитационные силы, приложенные к тем же телам, действуют им навстречу.

Представьте себе груз, подвешенный над землей на пружине. К нему приложены две силы: сила упругости растянутой пружины и сила тяжести. Согласно третьему закону Ньютона груз действует на пружину с силой, равной и противоположной силе упругости. Эта сила и будет его весом. У груза массой 1 кг вес равен Р = 1 кг ∙ 9,81 м/с 2 = 9,81 Н (ньютон).

Гравитационные силы: определение

Первая количественная теория гравитации, основанная на наблюдениях движения планет, была сформулирована Исааком Ньютоном в 1687 году в его знаменитых "Началах натуральной философии". Он писал, что силы притяжения, которые действуют на Солнце и планеты, зависят от количества вещества, которое они содержат. Онираспространяются на большие расстояния и всегда уменьшаются как величины, обратные квадрату расстояния. Как же можно вычислить эти гравитационные силы? Формула для силы F между двумя объектами с массами m 1 и m 2 , находящимися на расстоянии r, такова:

  • F=Gm 1 m 2 /r 2 ,
    где G — константа пропорциональности, гравитационная постоянная.

Физический механизм гравитации

Ньютон был не полностью удовлетворен своей теорией, поскольку она предполагала взаимодействие между притягивающимися телами на расстоянии. Сам великий англичанин был уверен, что должен существовать некий физический агент, ответственный за передачу действия одного тела на другое, о чем он вполне ясно высказался в одном из своих писем. Но время, когда было введено понятие гравитационного поля, которое пронизывает все пространство, наступило лишь через четыре столетия. Сегодня, говоря о гравитации, мы можем говорить о взаимодействии любого (космического) тела с гравитационным полем других тел, мерой которого и служат возникающие между каждой парой тел гравитационные силы. Закон всемирного тяготения, сформулированный Ньютоном в вышеприведенной форме, остается верным и подтверждается множеством фактов.

Теория гравитации и астрономия

Она была очень успешно применена к решению задач небесной механики во время XVIII и начале XIX века. К примеру, математики Д. Адамс и У. Леверье, анализируя нарушения орбиты Урана, предположили, что на него действуют гравитационные силы взаимодействия с еще неизвестной планетой. Ими было указано ее предполагаемое положение, и вскоре астрономом И. Галле там был обнаружен Нептун.

Хотя оставалась одна проблема. Леверье в 1845 году рассчитал, что орбита Меркурия прецессирует на 35"" за столетие, в отличие от нулевого значения этой прецессии, получаемого по теории Ньютона. Последующие измерения дали более точное значение 43"". (Наблюдаемая прецессия равна действительно 570""/век, но кропотливый расчет, позволяющий вычесть влияние от всех других планет, дает значение 43"".)

Только в 1915 г. Альберт Эйнштейн смог объяснить это несоответствие в рамках созданной им теории гравитации. Оказалось, что массивное Солнце, как и любое другое массивное тело, искривляет пространство-время в своей окрестности. Эти эффекты вызывают отклонения в орбитах планет, но у Меркурия, как самой малой и ближайшей к нашей звезде планете, они проявляются сильнее всего.

Инерционная и гравитационная массы

Как уже отмечалось выше, Галилей был первым, кто наблюдал, что объекты падают на землю с одинаковой скоростью, независимо от их массы. В формулах Ньютона понятие массы происходит от двух разных уравнений. Второй его закон говорит, что сила F, приложенная к телу с массой m, дает ускорение по уравнению F = ma.

Однако сила тяжести F, приложенная к телу, удовлетворяет формуле F = mg, где g зависит от другого тела, взаимодействующего с рассматриваемым (земли обычно, когда мы говорим о силе тяжести). В обоих уравнений m есть коэффициент пропорциональности, но в первом случае это инерционная масса, а во втором - гравитационная, и нет никакой очевидной причины, что они должны быть одинаковыми для любого физического объекта.

Однако все эксперименты показывают, что это действительно так.

Теория гравитации Эйнштейна

Он взял факт равенства инерционной и гравитационной масс как отправную точку для своей теории. Ему удалось построить уравнения гравитационного поля, знаменитые уравнения Эйнштейна, и с их помощью вычислить правильное значение для прецессии орбиты Меркурия. Они также дают измеренное значение отклонения световых лучей, которые проходят вблизи Солнца, и нет никаких сомнений в том, что из них следуют правильные результаты для макроскопической гравитации. Теория гравитации Эйнштейна, или общая теория относительности (ОТО), как он сам ее назвал, является одним из величайших триумфов современной науки.

Гравитационные силы - это ускорение?

Если вы не можете отличить инерционную массу от гравитационной, то вы не можете отличить и гравитацию от ускорения. Эксперимент в гравитационном поле вместо этого может быть выполнен в ускоренно движущемся лифте в отсутствии гравитации. Когда космонавт в ракете ускоряется, удаляясь от земли, он испытывает силу тяжести, которая в несколько раз больше земной, причем подавляющая ее часть приходит от ускорения.

Если никто не может отличить гравитацию от ускорения, то первую всегда можно воспроизвести путем ускорения. Система, в которой ускорение заменяет силу тяжести, называется инерциальной. Поэтому Луну на околоземной орбите также можно рассматривать как инерциальную систему. Однако эта система будет отличаться от точки к точке, поскольку изменяется гравитационное поле. (В примере с Луной гравитационное поле изменяет направление из одной точки в другую.) Принцип, согласно которому всегда можно найти инерциальную систему в любой точке пространства и времени, в которой физика подчиняется законам в отсутствии гравитации, называется принципом эквивалентности.

Гравитация как проявление геометрических свойств пространства-времени

Тот факт, что гравитационные силы можно рассматривать как ускорения в инерциальных системах координат, которые отличаются от точки к точке, означает, что гравитация - это геометрическое понятие.

Мы говорим, что пространство-время искривляется. Рассмотрим мяч на плоской поверхности. Он будет покоиться или, если нет никакого трения, равномерно двигаться при отсутствии действия каких-либо сил на него. Если поверхность искривляется, мяч ускорится и будет двигаться до самой низкой точки, выбирая кратчайший путь. Аналогичным образом теория Эйнштейна утверждает, что четырехмерное пространство-время искривлено, и тело движется в этом искривленном пространстве по геодезической линии, которой соответствует кратчайший путь. Поэтому гравитационное поле и действующие в нем на физические тела гравитационные силы - это геометрические величины, зависящие от свойств пространства-времени, которые наиболее сильно изменяются вблизи массивных тел.

Гравитация, она же притяжение или тяготение, - это универсальное свойство материи, которым обладают все предметы и тела во Вселенной. Суть гравитации залучается в том, что все материальные тела притягивают к себе все другие тела, находящиеся вокруг.

Земное притяжение

Если гравитация - это общее понятие и качество, которым обладают все предметы во Вселенной, то земное притяжение - это частный случай этого всеобъемлющего явления. Земля притягивает к себе все материальные объекты, находящиеся на ней. Благодаря этому люди и животные могут спокойно перемещаться по земле, реки, моря и океаны - оставаться в пределах своих берегов, а воздух - не летать по бескрайним просторам Космоса, а образовывать атмосферу нашей планеты.

Возникает справедливый вопрос: если все предметы обладают гравитацией, почему Земля притягивает к себе людей и животных, а не наоборот? Во-первых, мы тоже притягиваем к себе Землю, просто, по сравнению с ее силой притяжения наша гравитация ничтожно мала. Во-вторых, сила гравитации прямо пропорционально зависит от массы тела: чем меньше масса тела, тем ниже его гравитационные силы.

Второй показатель, от которого зависит сила притяжения - это расстояние между предметами: чем больше расстояние, тем меньше действие гравитации. В том числе благодаря этому, планеты движутся на своих орбитах, а не падают друг на друга.

Примечательно, что своей сферической формой Земля, Луна, Солнце и другие планеты обязаны именно силе тяготения. Она действует в направлении центра, подтягивая к нему вещество, составляющее «тело» планеты.

Гравитационное поле Земли

Гравитационное поле Земли - это силовое энергетическое поле, которое образуется вокруг нашей планеты благодаря действию двух сил:

  • гравитации;
  • центробежной силе, которая своим появление обязана вращению Земли вокруг своей оси (суточное вращение).

Поскольку и гравитация, и центробежная сила действуют постоянно, то и гравитационное поле является постоянным явлением.

Незначительное воздействие на поле оказывают силы тяготения Солнца, Луны и некоторых других небесных тел, а также атмосферных масс Земли.

Закон всемирного тяготения и сэр Исаак Ньютон

Английский физик, сэр Исаак Ньютон, согласно известной легенде, однажды гуляя по саду днем, увидел на небе Луну. В это же время с ветки упало яблоко. Ньютон тогда занимался изучением закона движения и знал, что яблоко падает под воздействием гравитационного поля, а Луна вращается по орбите вокруг Земли.

И тут в голову гениальному ученому, озаренную инсайтом, пришла мысль, что, возможно, яблоко падает на землю, подчиняясь той же силе, благодаря которой Луна находится на своей орбите, а не носится беспорядочно по всей галактике. Так был открыт закон всемирного тяготения, он же Третий закон Ньютона.

На языке математических формул этот закон выглядит так:

F = GMm/D 2 ,

где F - сила взаимного тяготения между двумя телами;

M - масса первого тела;

m - масса второго тела;

D 2 - расстояние между двумя телами;

G - гравитационная постоянная, равная 6,67х10 -11 .

Часть речи, характеризующая действия и состояния предмета - это глагол. Что это означает? Объект что-либо делает, пребывает в каком-либо состоянии или испытывает его на себе.

В неопределенной форме глагол отвечает на вопросы действия: что делать? или что сделать? Однако в русском языке эта часть речи обладает несколькими морфологическими признаками, благодаря которым может меняться грамматическая форма данной части речи.

Infinitus значит неопределённый

Глагол - это речевая единица, у которой можно определить род, время, лицо и другие морфологические характеристики. Но если глагол находится в инфинитиве, единственным признаком, какой мы можем увидеть, является совершенный вид либо несовершенный. Инфинитив - это, иначе говоря, неопределенная или, как еще ее называют, Это свойство данной части речи помогает разобраться с правописанием окончаний глаголов, когда речь идет о спряжении. К инфинитиву можно задать вопросы что делать? (сделать?) Он обычно оканчивается на -ть (ходить, пилить, садить и др.), на -ти (идти, найти, спасти и др.) или на -чь (стеречь, испечь, залечь и др.).

Время глагола

Это способность обозначать действие или состояние предмета во всех временах: сейчас делаю, раньше делал (сделал), потом сделаю (буду делать). Не все глагольные характеристики подпадают под категорию времени. Например, глагольные формы совершенного вида не употребляются в настоящем времени. Глаголы в условном наклонении не имеют ни будущего времени, ни настоящего, а могут употребляться только в форме с частицей бы.

Наклонение глагола

Глагол - это часть речи, способная использоваться в трех наклонениях.

  • В изъявительном наклонении эта часть речи описывает действия, которые в данный момент происходят, происходили в прошлом или будут происходить в будущем. Примеры: рассказываю, рассказывал, буду рассказывать (расскажу) . Иногда у глаголов в изъявительном наклонении в позиции настоящего, будущего времен может исчезать гласная буква, на которую оканчивается основа инфинитива: сидеть - сижу .
  • В условном наклонении глагол характеризует действия, возможные при неких условиях, или те, которые хотят совершить. Примеры: Я с удовольствием рассказала бы вам эту историю. Он почитал бы , если б нашлись слушатели. Слова в форме условного наклонения образованы путем присоединения к основе инфинитива суффикса -л- плюс частицы бы (б) . Частица может использоваться после глагола, перед ним, также она бывает иногда отделена от глагола другим словом: Просьбу бы высказал свою, да в горле комок. Слушал внимательно бы, тогда б и понял суть.
  • В повелительном наклонении глагол отражает некое принуждение. Примеры: расскажи, сядь, читай. Повелительное наклонение можно получить, присоединив к основе глагола настоящего или будущего времен суффикса -и- либо нулевого суффикса.

Когда формы одного наклонения употребляются в значении другого

В некоторых случаях, которые определяются смысловой окраской, форма одного наклонения может пользоваться значением другого. Рассмотрим примеры.

  • Изъявительное наклонение с частицами пусть (пускай), да воспринимаются как глаголы повелительного наклонения. Примеры: Да здравствует истина! Пусть скажут громкое ура защитникам свободы.
  • Условное наклонение, передающее смысл повелительного: Оставила бы ты, Наталья, эти хлопоты.
  • Повелительное наклонение, передающее смысл условного: Не пожалей я тогда денег - был бы уже на пароходе.
  • Повелительное наклонение, передающее смысл изъявительного: Он и служи барину, и мети, и чисти, и будь на побегушках.
  • Неопределенная форма глагола, передающая смысл изъявительного наклонения:
    И царица хохотать и плечами пожимать… (А. Пушкин); условного: Взять бы щепотку родной земли на память; повелительного: - Простить! Простить! - раздались голоса. (М. Булгаков.)

Виды глагола

Глагол - это часть речи, способная иметь два вида.

  • Совершенный - глаголы этого вида называют действие, указывая на его завершенность или результат. Примеры: что сделал? - рассказал (прошедшее время); что сделаю? - расскажу (будущее время). В инфинитиве: что сделать? - рассказать.
  • Несовершенный - глаголы этого вида называют действие, не указывая на его завершенность или результат. Примеры: что делал? - рассказывал (прошедшее время); что делаю? - рассказываю (настоящее время); что буду делать? - буду рассказывать (будущее время). В инфинитиве: что делать? - рассказывать.

Обычно один и тот же глагол может употребляться в обоих видах, но бывают слова, имеющие только один вид:

  • только совершенный - оказаться, очутиться, грянуть и др.;
  • только несовершенный - принадлежать, разгуливать и др.

Также в русском языке встречаются так называемые двувидовые глаголы, их можно использовать как слова того и другого вида. Пример: Ученый недавно (что сделал?) клонировал подопытное животное. По радио передавали концерт Шостаковича, пока ученый (что делал?) клонировал подопытное животное. Еще пример: Злодей (что сделал?) ранил принца ножом. Твои слова (что делают?) ранят меня в самое сердце.

у глаголов

Спряжение глаголов - это способность изменяться по лицам и числам. Их всего два. Правило спряжения помогает нам разобраться с тем, как писать окончания глаголов, употребленных в форме первого, второго, третьего лица, если на них не падает ударение. Необходимо запомнить, что ко второму спряжению принадлежат все глаголы, которые в инфинитиве заканчиваются на -ить . Здесь есть только два исключения - слова брить и стелить, которые будут относиться к первому спряжению.

К первому спряжению относятся все остальные глаголы. Но здесь тоже есть исключения, которые надо запомнить: 7 глаголов, заканчивающихся в инфинитиве на -еть и 4 глагола на -ать. Их легче запомнить в зарифмованном виде:

Гнать, держать, смотреть да видеть,
дышать, слышать, ненавидеть,
и обидеть, да терпеть,
и зависеть, да вертеть.

Глаголы, образованные приставочным способом от данных слов-исключений тоже относятся к исключениям: увидеть, догнать, застелить, услышать и т. д.

Как мы упоминали, - это то, что дает возможность не ошибиться в правописании безударных окончаний глагола. Вот как выглядят личные окончания у глаголов в I и во II спряжениях.

Каков алгоритм действий при определении того, как написать окончание в глаголе из предложения «Мужчины кол..т дрова»? Превращаем форму глагола в неопределенную: колоть. Заканчивается на -оть и к исключениям не относится, значит, принадлежит к I спряжению. Согласно приведенной таблице, в третьем лице множественного числа будем писать окончание -ют: Мужчины колют дрова.

Еще пример: Ветер, зачем гон..шь тучи на юг? Ставим глагол в инфинитивную форму - гнать, видим окончание -ать. Слово должно относиться к I спряжению, однако оно входит в группу исключений и поэтому относится ко II спряжению. Следовательно, во втором лице единственного числа глагол имеет окончание -ишь: Ветер, зачем гонишь тучи на юг?

Лица глагола

Глагол - это такая часть речи, какая может изменяться по лицам, кроме случаев, когда он используется в прошедшем времени. В каждом из трех лиц у глагола имеются разные окончания. Примеры: я замечаю, ты замечаешь, он замечает, мы замечаем, вы замечаете, они замечают.

Числа глагола

Эта часть речи во всех грамматических формах может употребляться в единственном и множественном числах. Примеры: К нам приехал дорогой гость. К нам приехали гости.

Род глагола

Глагол - это речевой компонент, который может изменяться по родам в прошедшем времени: Малыш ползал по полу (мужской род). Стрелка часов поползла назад (женский род). Насекомое медленно ползло вдоль дороги (средний род).

В настоящем и будущем времени род глагола определить невозможно: Я ползу по тоннелю (род - ?). Буду ползти необходимую дистанцию (род - ?).

Переходность

Глагол - это особенная часть речи, обладающая свойством переходности.

  • Переходные глаголы сочетаются с именами существительными или с местоимениями в форме винительного падежа и без предлога: слушать (что?) музыку, вдеть (кого?) жирафа.
  • К непереходным глаголам относятся все остальные: заплатить (за что?) за проезд, надеяться (на кого?) на друга.

Залог глагола

Этот грамматический признак отражает ситуацию, когда либо сам объект совершает действие, либо действие совершается над ним. Залог бывает действительным (действие осуществляется кем-то или чем-то) и страдательным (действие осуществляется над кем-то или чем-то). Примеры: Сестра рассаживает цветы (действит. залог). Цветы рассажены сестрой (страдат. залог).

Возвратность

Эта часть речи может иметь возвратную форму, которая получается при помощи присоединения к окончанию слова постфикса -ся (-сь) . Примеры: играть - играться, игралась, ломать - ломаться, ломалась и т. д.

Обычно один и тот же глагол может быть возвратным и невозвратным, но есть слова, которые всегда только возвратные. К таким относятся глаголы гордиться, нравиться, лениться, сомневаться и др. Примеры употребления: Мне снится сон. Малыш Мы все надеемся на разум.

Синтаксическая роль

В предложении глаголы исполняют роль сказуемого и подчеркиваются двумя чертами. Как и подлежащее, сказуемое относится к главным членам предложения и вместе с ним создает грамматическую основу предложения.

Глагол в инфинитиве способен быть не только сказуемым, но и другими членами предложения. Примеры: Любить - это носить в сердце солнце (в данном случае глагол любить отвечает на вопрос что? и является подлежащим). У меня была мечта уехать в Австралию (мечта какая? - уехать в Австралию, здесь глагол играет роль определения). Я просила тебя сходить в магазин (попросила о чем? - сходить в магазин, в данном предложении глагол выступает в качестве дополнения). Мы отправили бабушку в санаторий подлечиться (отправили в санаторий зачем? - подлечиться, это обстоятельство цели).

Подведем итог

Глагол - это одна из самостоятельных частей речи, характеризующая действие объекта или его состояние. Он обладает такими морфологическими качествами, как вид, переходность, спряжение, возвратность. Глагол может меняться по наклонениям, числам, временам, лицам, родам. В предложении обычно эта часть речи бывает сказуемым, а в неопределенной форме может исполнять роль любого члена предложения.