Теплые вещи

Основные этапы клеточного дыхания. Клеточное дыхание и фотосинтез

Клеточное дыхание - это окисление органических веществ в клетке, в результате которого синтезируются молекулы АТФ. Исходным сырьем (субстратом) обычно служат углеводы, реже жиры и еще реже белки. Наибольшее количество молекул АТФ дает окисление кислородом, меньшее – окисление другими веществами и переносом электронов.

Углеводы, или полисахариды, перед использованием в качестве субстрата клеточного дыхания распадаются до моносахаридов. Так у растений крахмал, а у животных гликоген гидролизуются до глюкозы.

Глюкоза является основным источником энергии почти для всех клеток живых организмов.

Первый этап окисления глюкозы - гликолиз. Он не требует кислорода и характерен как при анаэробном, так и аэробном дыхании.

Биологическое окисление

Клеточное дыхание включает в себя множество окислительно-восстановительных реакций, в которых происходит перемещение водорода и электронов от одних соединений (или атомов) к другим. При потери электрона каким-либо атомом происходит его окисление; при присоединении электрона - восстановление. Окисляемое вещество - это донор, а восстанавливаемое - акцептор водорода и электронов. Окислительно-восстановительные реакции, протекающие в живых организмах носят название биологического окисления, или клеточного дыхания.

Обычно при окислительных реакциях происходит выделение энергии. Причина этого кроется в физических законах. Электроны в окисляемых органических молекулах находятся на более высоком энергетическом уровне, чем в продуктах реакции. Электроны, переходя с более высокого на более низкий энергетический уровень, высвобождают энергию. Клетка умеет фиксировать ее в связях молекул - универсальном «топливе» живого.

Наиболее распространенным в природе конечным акцептором электронов является кислород, который восстанавливается. При аэробном дыхании в результате полного окисления органических веществ образуются углекислый газ и вода.

Биологическое окисление протекает по-этапно, в нем участвуют множество ферментов и соединения, переносящие электроны. При ступенчатом окислении электроны перемещаются по цепи переносчиков. На определенных этапах цепи происходит выделение порции энергии, достаточной для синтеза АТФ из АДФ и фосфорной кислоты.

Биологическое окисление весьма эффективно по-сравнению с различными двигателями. Около половины выделяющейся энергии в конечном итоге фиксируется в макроэргических связях АТФ. Другая часть энергии рассеивается в виде тепла. Поскольку процесс окисления ступенчатый, то тепловая энергия выделяется понемногу и не повреждает клетки. В то же время она служит для поддержания постоянной температуры тела.

Аэробное дыхание

Различные этапы клеточного дыхания у аэробных эукариот происходят

    в матриксе митохондрий – , или цикл трикарбоновых кислот,

    на внутренней мембране митохондрий – , или дыхательная цепь.

На каждом из этих этапов из АДФ синтезируется АТФ, больше всего на последнем. Кислород в качестве окислителя используется только на этапе окислительного фосфорилирования.

Суммарные реакции аэробного дыхания выглядит следующим образом.

Гликолиз и цикл Кребса: C 6 H 12 O 6 + 6H 2 O → 6CO 2 + 12H 2 + 4АТФ

Дыхательная цепь: 12H 2 + 6O 2 → 12H 2 O + 34АТФ

Таким образом биологическое окисление одной молекулы глюкозы дает 38 молекул АТФ. На самом деле нередко бывает меньше.

Анаэробное дыхание

При анаэробном дыхании в окислительных реакциях акцептор водорода НАД не передает водород в конечном итоге на кислород, которого в данном случае нет.

В качестве акцептора водорода может быть использована пировиноградная кислота, образующаяся при гликолизе.

У дрожжей пируват сбраживается до этанола (спиртовое брожение). При этом в процессе реакций образуется также углекислый газ и используется НАД:

CH 3 COCOOH (пируват) → CH 3 CHO (ацетальдегид) + CO 2

CH 3 CHO + НАД · H 2 → CH 3 CH 2 OH (этанол) + НАД

Молочнокислое брожение происходит в животных клетках, испытывающих временный недостаток кислорода, и у ряда бактерий:

CH 3 COCOOH + НАД · H 2 → CH 3 CHOHCOOH (молочная кислота) + НАД

Оба брожения не дают выхода АТФ. Энергию в данном случае дает только гликолиз, и составляет она всего две молекулы АТФ. Значительная часть энергии глюкозы так и не извлекается. Поэтому анаэробное дыхание считается малоэффективным.

В качестве исходных субстратов дыхания могут выступать различные вещества, преобразуемые в ходе специфических метаболических процессов в Ацетил-КоА с высвобождением ряда побочных продуктов. Восстановление НАД (НАДФ) и образование АТФ может происходить уже на этом этапе, однако большая их часть образуется в цикле трикарбоновых кислот при переработке Ацетил-КоА.

Гликолиз

Гликолиз - путь ферментативного расщепления глюкозы - является общим практически для всех живых организмов процессом. У аэробов он предшествует собственно клеточному дыханию, у анаэробов завершается брожением . Сам по себе гликолиз является полностью анаэробным процессом и для осуществления не требует присутствия кислорода .

Первый его этап протекает с высвобождением 2 молекул АТФ и включает в себя расщепление молекулы глюкозы на 2 молекулы глицеральдегид-3-фосфата . На втором этапе происходит НАД -зависимое окисление глицеральдегид-3-фосфата, сопровождающееся субстратным фосфорилированием , то есть присоединением к молекуле остатка фосфорной кислоты и формированием в ней макроэргической связи, после которого остаток переносится на АДФ с образованием АТФ .

Таким образом, уравнение гликолиза имеет следующий вид:

Глюкоза + 2НАД + + 4АДФ + 2АТФ + 2Ф н = 2ПВК + 2НАД∙Н + 2 АДФ + 4АТФ + 2H 2 O + 4Н + .

Сократив АТФ и АДФ из левой и правой частей уравнения реакции, получим:

Глюкоза + 2НАД + + 2АДФ + 2Ф н = 2НАД∙Н + 2ПВК + 2АТФ + 2H 2 O + 4Н + .

Окислительное декарбоксилирование пирувата

Образовавшаяся в ходе гликолиза пировиноградная кислота (пируват) под действием пируватдегидрогеназного комплекса (сложная структура из 3 различных ферментов и более 60 субъединиц) распадается на углекислый газ и ацетальдегид , который вместе с Коферментом А образует Ацетил-КоА . Реакция сопровождается восстановлением НАД до НАД∙Н .

У эукариот процесс протекает в матриксе митохондрий .

β-окисление жирных кислот

Наконец, на четвёртой стадии образовавшаяся β-кетокислота расщепляется β-кетотиолазой в присутствии кофермента А на ацетил-КоА и новый ацил-КоА, в которой углеродная цепь на 2 атома короче. Цикл β-окисления повторяется до тех пор, пока вся жирная кислота не будет переработана в ацетил-КоА.

Цикл трикарбоновых кислот

Суммарное уравнение реакций:

Ацетил-КоА + 3НАД + + ФАД + ГДФ + Ф н + 2H 2 O + КоА-SH = 2КоА-SH + 3НАДH + 3H + + ФАДН 2 + ГТФ + 2CO 2

У эукариот ферменты цикла находятся в свободном состоянии в матриксе митохондрий, только сукцинатдегидрогеназа встроена во внутреннюю митохондриальную мембрану.

Основное количество молекул АТФ вырабатывается по способу окислительного фосфорилирования на последней стадии клеточного дыхания: в электронтранспортной цепи. Здесь происходит окисление НАД∙Н и ФАДН 2 , восстановленных в процессах гликолиза, β-окисления, цикла Кребса и т.д. Энергия, выделяющаяся в ходе этих реакций, благодаря цепи переносчиков электронов, локализованной во внутренней мембране митохондрий (у прокариот - в цитоплазматической мембране), трансформируется в трансмембранный протонный потенциал . Фермент АТФ-синтаза использует этот градиент для синтеза АТФ, преобразуя его энергию в энергию химических связей. Подсчитано, что молекула НАД∙Н может дать в ходе этого процесса 2.5 молекулы АТФ, ФАДН 2 - 1.5 молекулы.

Конечным акцептором электрона в дыхательной цепи аэробов является кислород .

Анаэробное дыхание

Общее уравнение дыхания, баланс АТФ

Стадия Выход кофермента Выход АТФ (ГТФ) Способ получения АТФ
Первая фаза гликолиза −2 Фосфорилирование глюкозы и фруктозо-6-фосфата с использованием 2 АТФ из цитоплазмы.
Вторая фаза гликолиза 4 Субстратное фосфорилирование
2 НАДН 3 (5) Окислительное фосфорилирование. Только 2 АТФ образуется из НАДН в электронтранспортной цепи, поскольку кофермент образуется в цитоплазме и должен быть транспортирован в митохондрии. При использовании малат-аспартатного челнока для транспорта в митохондрии из НАДН образуется 3 моль АТФ. При использовании же глицерофосфатного челнока образуется 2 моль АТФ.
Декарбоксилирование пирувата 2 НАДН 5 Окислительное фосфорилирование
Цикл Кребса 2 Субстратное фосфорилирование
6 НАДН 15 Окислительное фосфорилирование
2 ФАДН 2 3 Окислительное фосфорилирование
Общий выход 30 (32) АТФ При полном окислении глюкозы до углекислого газа и окислении всех образующихся коферментов.

См. также

Напишите отзыв о статье "Клеточное дыхание"

Примечания

Отрывок, характеризующий Клеточное дыхание

Дни шли, а я не знала, была ли моя девочка всё ещё в Мэтэоре? Не появлялся ли за ней Караффа?.. И всё ли было с ней хорошо.
Моя жизнь была пустой и странной, если не сказать – безысходной. Я не могла покинуть Караффу, так как знала – стоит мне только исчезнуть, и он тут же выместит свою злость на моей бедной Анне... Также, я всё ещё не в силах была его уничтожить, ибо не находила пути к защите, которую подарил ему когда-то «чужой» человек. Время безжалостно утекало, и я всё сильнее чувствовала свою беспомощность, которая в паре с бездействием, начинала медленно сводить меня с ума...
Прошёл почти уже месяц после моего первого визита в подвалы. Рядом не было никого, с кем я могла бы обмолвиться хотя бы словом. Одиночество угнетало всё глубже, поселяя в сердце пустоту, остро приправленную отчаяньем...
Я очень надеялась, что Мороне всё-таки выжил, несмотря на «таланты» Папы. Но возвращаться в подвалы побаивалась, так как не была уверена, находился ли там всё ещё несчастный кардинал. Мой повторный визит мог навлечь на него настоящую злобу Караффы, и платить за это Мороне пришлось бы по-настоящему дорого.
Оставаясь отгороженной от любого общения, я проводила дни в полнейшей «тишине одиночества». Пока, наконец, не выдержав более, снова спустилась в подвал...
Комната, в которой я месяц назад нашла Мороне, на этот раз пустовала. Оставалось только надеяться, что отважный кардинал всё ещё жил. И я искренне желала ему удачи, которой узникам Караффы, к сожалению, явно не доставало.
И так как я всё равно уже находилась в подвале, то, чуть подумав, решила посмотреть его дальше, и осторожно открыла следующую дверь....
А там, на каком-то жутком пыточном «инструменте» лежала совершенно голая, окровавленная молодая девушка, тело которой представляло собою настоящую смесь живого палёного мяса, порезов и крови, покрывавших её всю с головы до ног... Ни палача, ни, тем более – Караффы, на моё счастье, в комнате пыток не было.
Я тихонько подошла к несчастной и осторожно погладила её по опухшей, нежной щеке. Девушка застонала. Тогда, бережно взяв её хрупкие пальцы в свою ладонь, я медленно начала её «лечить»... Вскоре на меня удивлённо глядели чистые, серые глаза...
– Тихо, милая... Лежи тихо. Я попробую тебе помочь, насколько это возможно. Но я не знаю, достаточно ли у меня будет времени... Тебя очень сильно мучили, и я не уверена, смогу ли всё это быстро «залатать». Расслабься, моя хорошая, и попробуй вспомнить что-то доброе... если сможешь.
Девушка (она оказалась совсем ещё ребёнком) застонала, пытаясь что-то сказать, но слова почему-то не получались. Она мычала, не в состоянии произнести чётко даже самого краткого слова. И тут меня полоснуло жуткое понимание – у этой несчастной не было языка!!! Они его вырвали... чтобы не говорила лишнего! Чтобы не крикнула правду, когда будут сжигать на костре... Чтобы не могла сказать, что они с ней творили...
О боже!.. Неужели всё это вершили ЛЮДИ???
Чуть успокоив своё омертвевшее сердце, я попыталась обратиться к ней мысленно – девочка услышала. Что означало – она была одарённой!.. Одной из тех, кого Папа так яростно ненавидел. И кого так зверски сжигал живьём на своих ужасающих человеческих кострах....
– Что же они с тобой сделали, милая?!.. За что тебе отняли речь?!
Стараясь затянуть повыше упавшее с её тела грубое рубище непослушными, дрожащими руками, потрясённо шептала я.
– Не бойся ничего, моя хорошая, просто подумай, что ты хотела бы сказать, и я постараюсь услышать тебя. Как тебя зовут, девочка?
– Дамиана... – тихо прошелестел ответ.
– Держись, Дамиана, – как можно ласковее улыбнулась я. – Держись, не ускользай, я постараюсь помочь тебе!
Но девушка лишь медленно качнула головой, а по её избитой щеке скатилась чистая одинокая слезинка...
– Благодарю вас... за добро. Но я не жилец уже... – прошелестел в ответ её тихий «мысленный» голос. – Помогите мне... Помогите мне «уйти». Пожалуйста... Я не могу больше терпеть... Они скоро вернутся... Прошу вас! Они осквернили меня... Пожалуйста, помогите мне «уйти»... Вы ведь знаете – как. Помогите... Я буду и «там» благодарить, и помнить вас...
Она схватила своими тонкими, изуродованными пыткой пальцами моё запястье, вцепившись в него мёртвой хваткой, будто точно знала – я и вправду могла ей помочь... могла подарить желанный покой...
Острая боль скрутила моё уставшее сердце... Эта милая, зверски замученная девочка, почти ребёнок, как милости, просила у меня смерти!!! Палачи не только изранили её хрупкое тело – они осквернили её чистую душу, вместе изнасиловав её!.. И теперь, Дамиана готова была «уйти». Она просила смерти, как избавления, даже на мгновение, не думая о спасении. Она была замученной и осквернённой, и не желала жить... У меня перед глазами возникла Анна... Боже, неужели и её ждал такой же страшный конец?!! Смогу ли я её спасти от этого кошмара?!
Дамиана умоляюще смотрела на меня своими чистыми серыми глазами, в которых отражалась нечеловечески глубокая, дикая по своей силе, боль... Она не могла более бороться. У неё не хватало на это сил. И чтобы не предавать себя, она предпочитала уйти...
Что же это были за «люди», творившие такую жестокость?!. Что за изверги топтали нашу чистую Землю, оскверняя её своей подлостью и «чёрной» душой?.. Я тихо плакала, гладя милое лицо этой мужественной, несчастной девчушки, так и не дожившей даже малой частью свою грустную, неудавшуюся жизнь... И мою душу сжигала ненависть! Ненависть к извергу, звавшему себя римским Папой... наместником Бога... и святейшим Отцом... наслаждавшимся своей прогнившей властью и богатством, в то время, как в его же жутком подвале из жизни уходила чудесная чистая душа. Уходила по собственному желанию... Так как не могла больше вынести запредельную боль, причиняемую ей по приказу того же «святого» Папы...
О, как же я ненавидела его!!!.. Всем сердцем, всей душой ненавидела! И знала, что отомщу ему, чего бы мне это ни стоило. За всех, кто так зверски погиб по его приказу... За отца... за Джироламо... за эту добрую, чистую девочку... и за всех остальных, у кого он играючи отнимал возможность прожить их дорогую и единственную в этом теле, земную жизнь.
– Я помогу тебе, девочка... Помогу тебе милая... – ласково баюкая её, тихо шептала я. – Успокойся, солнышко, там не будет больше боли. Мой отец ушёл туда... Я говорила с ним. Там только свет и покой... Расслабься, моя хорошая... Я исполню твоё желание. Сейчас ты будешь уходить – не бойся. Ты ничего не почувствуешь... Я помогу тебе, Дамиана. Я буду с тобой...
Из её изуродованного физического тела вышла удивительно красивая сущность. Она выглядела такой, какой Дамиана была, до того, как появилась в этом проклятом месте.
– Спасибо вам... – прошелестел её тихий голос. – Спасибо за добро... и за свободу. Я буду помнить вас.
Она начала плавно подниматься по светящемуся каналу.
– Прощай Дамиана... Пусть твоя новая жизнь будет счастливой и светлой! Ты ещё найдёшь своё счастье, девочка... И найдёшь хороших людей. Прощай...
Её сердце тихо остановилось... А исстрадавшаяся душа свободно улетала туда, где никто уже не мог причинять ей боли. Милая, добрая девочка ушла, так и не узнав, какой чудесной и радостной могла быть её оборванная, непрожитая жизнь... скольких хороших людей мог осчастливить её Дар... какой высокой и светлой могла быть её непознанная любовь... и как звонко и счастливо могли звучать голоса её не родившихся в этой жизни детей...
Успокоившееся в смерти лицо Дамианы разгладилось, и она казалась просто спящей, такой чистой и красивой была теперь... Горько рыдая, я опустилась на грубое сидение рядом с её опустевшим телом... Сердце стыло от горечи и обиды за её невинную, оборванную жизнь... А где-то очень глубоко в душе поднималась лютая ненависть, грозясь вырваться наружу, и смести с лица Земли весь этот преступный, ужасающий мир...

Проработав эти темы, Вы должны уметь:

  1. Охарактеризовать приведенные ниже понятия и объяснить соотношения между ними:
    • полимер, мономер;
    • углевод, моносахарид, дисахарид, полисахарид;
    • липид, жирная кислота, глицерин;
    • аминокислота, пептидная связь, белок;
    • катализатор, фермент, активный центр;
    • нуклеиновая кислота, нуклеотид.
  2. Перечислить 5-6 причин, которые делают воду столь важным компонентом живых систем.
  3. Назвать четыре главных класса органических соединений содержащихся в живых организмах; охарактеризовать роль каждого из них.
  4. Объяснить, почему контролируемые ферментами реакции зависят от температур, рН и присутствием коферментов.
  5. Рассказать о роли АТФ в энергетическом хозяйстве клетки.
  6. Назвать исходные вещества, основные этапы и конечные продукты реакций, вызываемых светом и реакции фиксации углерода.
  7. Дать краткое описание общей схемы клеточного дыхания, из которого было бы ясно, какое место занимают реакции гликолиза, цикла Г.Кребса (цикла лимонной кислоты) и цепь переноса электронов.
  8. Сравнить дыхание и брожение.
  9. Описать строение молекулы ДНК и объяснить почему число остатков аденина равно числу остатков тимина, а число остатков гуанина равно числу остатков цитозина.
  10. Составить краткую схему синтеза РНК на ДНК (транскрипция) у прокариот.
  11. Описать свойства генетического кода и объяснить, почему он должен быть триплетным.
  12. Исходя из данной цепи ДНК и таблицы кодонов определить комплементарную последовательность матричной РНК, указать кодоны транспортной РНК и аминокислотную последовательность, которая образуется в результате трансляции.
  13. Перечислить этапы белкового синтеза на уровне рибосом.

Алгоритм решения задач.

Тип 1. Самокопирование ДНК.

Одна из цепочек ДНК имеет такую последовательность нуклеотидов:
АГТАЦЦГАТАЦТЦГАТТТАЦГ...
Какую последовательность нуклеотидов имеет вторая цепочка той же молекулы?

Чтобы написать последовательность нуклеотидов второй цепочки молекулы ДНК, когда известна последовательность первой цепочки, достаточно заменить тимин на аденин, аденин на тимин, гуанин- на цитозин и цитозин на гуанин. Произведя такую замену, получаем последовательность:
ТАЦТГГЦТАТГАГЦТАААТГ...

Тип 2. Кодирование белков.

Цепочка аминокислот белка рибонуклеазы имеет следующее начало: лизин-глутамин-треонин-аланин-аланин-аланин-лизин...
С какой последовательности нуклеотидов начинается ген, соответствующий этому белку?

Для этого следует воспользоваться таблицей генетического кода. Для каждой аминокислоты находим ее кодовое обозначение в виде соответствующей тройки нуклеотидов и выписываем его. Располагая эти тройки друг за другом в таком же порядке, в каком идут соответствующие им аминокислоты, получаем формулу строения участка информационной РНК. Как правило таких троек несколько, выбор делается по Вашему решению (но, берется только одна из троек). Решений соответственно может быть несколько.
АААЦАААЦУГЦГГЦУГЦГААГ

С какой последовательности аминокислот начинается белок, если он закодирован такой последовательностью нуклеотидов:
АЦГЦЦЦАТГГЦЦГГТ...

По принципу комплементарности находим строение участка информационной РНК, образующейся на данном отрезке молекулы ДНК:
УГЦГГГУАЦЦГГЦЦА...

Затем обращаемся к таблице генетического кода и для каждой тройки нуклеотидов, начиная с первой, находим и выписываем соответствующую ей аминокислоту:
Цистеин-глицин-тирозин-аргинин-пролин-...

Иванова Т.В., Калинова Г.С., Мягкова А.Н. "Общая биология". Москва, "Просвещение", 2000

  • Тема 4. "Химический состав клетки." §2-§7 стр. 7-21
  • Тема 5. "Фотосинтез." §16-17 стр. 44-48
  • Тема 6. "Клеточное дыхание." §12-13 стр. 34-38
  • Тема 7. "Генетическая информация." §14-15 стр. 39-44

Итак, клеточное дыхание происходит в клетке.

Но где именно? Какая органелла осуществляет этот процесс?

Основной этап клеточного дыхания осуществляется в . Как известно, основной продукт работы митохондрии — молекулы АТФ — синоним понятия «энергия» в биологии. Действительно, основным продуктом этого процесса является энергия, молекулы АТФ.

АТФ — это молекула — синоним энергии в биологии. Расшифровывется как Аденозинтрифосфат или Аденозинтрифосфорная кислота. Как видно из рисунка формулы, в составе молекулы есть:

  1. три связи с остатками фосфорной кислоты, при разрыве которых выделяется большое количество энергии,
  2. углевод рибоза (пятиатомый сахар) и
  3. азотистое основание

1 Этап клеточного дыхания — подготовительный

Каким образом вещества попадают в клетки? В процессе пищеварения организма. Суть процесса пищеварения — расщепление полимеров, поступающих в организм с пищей, до мономеров:

  • расщепляются до аминокислот;
  • — до глюкозы;
  • расщепляются до глицерина и жирных кислот.

Т.е. в клетку поступают уже мономеры.

2 Этап клеточного пищеварения

Гликолиз — ферментативный процесс последовательного расщепления глюкозы в клетках, сопровождающийся синтезом АТФ.

Гликолиз при аэробных условиях ведёт к образованию пировиноградной кислоты (ПВК) (пирувата),

гликолиз в анаэробных условиях (бескислородных или при недостатке кислорода) ведёт к образованию молочной кислоты (лактата).

CH 3 -CH(OH)-COOH

Процесс идет с участием молекул фосфорной кислоты, поэтому называется окислительное фосфорилирование

Гликолиз является основным путём глюкозы в организме животных.

Превращения происходят в , т.е. процесс будет однозначно анаэробным: молекула глюкозы расщепится до ПВК — пировиноградной кислоты с выделением 2 молекул АТФ:

3 Этап клеточного пищеварения (кислородный)

Поступая в митохондрию, происходит окисление: ПВК под действием кислорода расщепляется до углекислого газа (суммарное уравнение):

Вначале отщепляется один углеродный атом пировиноградной кислоты. При этом образуется углекислый газ, энергия (она запасается в одной молекуле НАДФ) и двухуглеродная молекула - ацетильная группа. Затем реакционная цепь поступает в метаболический координационный центр клетки - цикл Кребса .

Цикл Кребса

(цикл лимонной кислоты)

Цикл Кребса — это реакции, которые начинаются, когда определенная входящая молекула соединяется с другой молекулой, выполняющей функцию «помощника». Такая комбинация инициирует серию других химических реакций, в которых образуются молекулы-продукты и в конце воссоздается молекула-помощник, которая может начать весь процесс вновь.

Для переработки энергии, запасенной в одной молекуле глюкозы , цикл Кребса нужно пройти дважды

Процесс многостадийный, и в нем, помимо различных кислот с интересными названиями участвуют коферменты (КоА).

Что такое коферменты?

(коэнзимы)

  • это органические вещества небольшого размера
  • они способны соединяться с белками (или прямо с ферментами, у которых, кстати, белковая природа), образуя активное вещество, косплекс, которое будет являться чем-то вроде катализатора.

Приставка «ко-» — это как «со-» — сопродюсер, соотечественник и т.п. Т.е. «вместе, с «

Гликолиз - катаболический путь исключительной важности.

Он обеспечивает энергией клеточные реакции, в том числе и синтез белка.

Промежуточные продукты гликолиза используются при синтезе жиров.

Пируват также может быть использован для синтеза других соединений. Благодаря гликолизу производительность митохондрий и доступность кислорода не ограничивают мощность мышц при кратковременных предельных нагрузках.

Которых в результате процесса образуется 38 и др.) и может быть использована по мере необходимости. Входит в группу процессов катаболизма . О физиологических процессах транспортировки к клеткам многоклеточных организмов кислорода и удалению от них углекислого газа см. статью Дыхание .

Схема гликолиза

Использование различных начальных субстратов

В качестве исходных субстратов дыхания могут выступать различные вещества, преобразуемые в ходе специфических метаболических процессов в Ацетил-КоА с высвобождением ряда побочных продуктов. Восстановление НАД (НАДФ) и образование АТФ может происходить уже на этом этапе, однако большая их часть образуется в цикле трикарбоновых кислот при переработке Ацетил-КоА.

Гликолиз

Гликолиз - путь ферментативного расщепления глюкозы - является общим практически для всех живых организмов процессом. У аэробов он предшествует собственно клеточному дыханию, у анаэробов завершается брожением . Сам по себе гликолиз является полностью анаэробным процессом и для осуществления не требует присутствия кислорода .

Первый его этап протекает с высвобождением 2 молекул АТФ и включает в себя расщепление молекулы глюкозы на 2 молекулы глицеральдегид-3-фосфата . На втором этапе происходит НАД -зависимое окисление глицеральдегид-3-фосфата, сопровождающееся субстратным фосфорилированием , то есть присоединением к молекуле остатка фосфорной кислоты и формированием в ней макроэргической связи, после которого остаток переносится на АДФ с образованием АТФ .

Таким образом, уравнение гликолиза имеет следующий вид:

Глюкоза + 2НАД + + 4АДФ + 2АТФ + 2Ф н = 2ПВК + 2НАД∙Н + 2 АДФ + 4АТФ + 2H 2 O + 4Н + .

Сократив АТФ и АДФ из левой и правой частей уравнения реакции, получим:

Глюкоза + 2НАД + + 2АДФ + 2Ф н = 2НАД∙Н + 2ПВК + 2АТФ + 2H 2 O + 4Н + .

Окислительное декарбоксилирование пирувата

Образовавшаяся в ходе гликолиза пировиноградная кислота (пируват) под действием пируватдегидрогеназного комплекса (сложная структура из 3 различных ферментов и более 60 субъединиц) распадается на углекислый газ и ацетальдегид , который вместе с Коферментом А образует Ацетил-КоА . Реакция сопровождается восстановлением НАД до НАД∙Н .

У эукариот процесс протекает в матриксе митохондрий .

β-окисление жирных кислот

Наконец, на четвёртой стадии образовавшаяся β-кетокислота расщепляется β-кетотиолазой в присутствии кофермента А на ацетил-КоА и новый ацил-КоА, в которой углеродная цепь на 2 атома короче. Цикл β-окисления повторяется до тех пор, пока вся жирная кислота не будет переработана в ацетил-КоА.

Цикл трикарбоновых кислот

Суммарное уравнение реакций:

Ацетил-КоА + 3НАД + + ФАД + ГДФ + Ф н + 2H 2 O + КоА-SH = 2КоА-SH + 3НАДH + 3H + + ФАДН 2 + ГТФ + 2CO 2

У эукариот ферменты цикла находятся в свободном состоянии в матриксе митохондрий, только сукцинатдегидрогеназа встроена во внутреннюю митохондриальную мембрану.

Окислительное фосфорилирование

Основное количество молекул АТФ вырабатывается по способу окислительного фосфорилирования на последней стадии клеточного дыхания: в электронтранспортной цепи. Здесь происходит окисление НАД∙Н и ФАДН 2 , восстановленных в процессах гликолиза, β-окисления, цикла Кребса и т.д. Энергия, выделяющаяся в ходе этих реакций, благодаря цепи переносчиков электронов, локализованной во внутренней мембране митохондрий (у прокариот - в цитоплазматической мембране), трансформируется в трансмембранный протонный потенциал. Фермент АТФ-синтаза использует этот градиент для синтеза АТФ, преобразуя его энергию в энергию химических связей. Подсчитано, что молекула НАД∙Н может дать в ходе этого процесса 2.5 молекулы АТФ, ФАДН 2 - 1.5 молекулы.

Конечным акцептором электрона в дыхательной цепи аэробов является кислород .

Анаэробное дыхание

Если в электронтранспортной цепи вместо кислорода используется другой конечный акцептор (трёхвалентное железо , нитрат - или сульфат -анион), дыхание называется анаэробным. Анаэробное дыхание свойственно в основном бактериям , которые благодаря этому играют важную роль в биогеохимическом цикле серы, азота и железа.