Теплые вещи

Температура воздуха с высотой повышается или понижается. Атмосфера земли и физические свойства воздуха

Изменение температуры воздуха с высотой

Распределение температуры в атмосфере по вертикали поло­жено в основу разделения атмосферы на пять основных слоев (см. раздел 1.3). Для сельскохозяйственной метеорологии наибольший интерес представляют закономерности изменения температуры в тропосфере, особенно в ее приземном слое.

Вертикальный градиент температуры

Изменение температуры воздуха на 100 м высоты называется вертикальным градиентом температуры (ВГТ

ВГТ зависит от ряда факторов: времени года (зимой он мень­ше, летом больше), времени суток (ночью меньше, днем больше), расположения воздушных масс (если на каких-либо высотах над холодным слоем воздуха располагается слой более теплого воз­духа, то ВГТ меняет знак на обратный). Среднее значение ВГТ в тропосфере составляет около 0,б°С/100 м.

В приземном слое атмосферы ВГТ зависит от времени суток, погоды и от характера подстилающей поверхности. Днем ВГТ почти всегда положителен, особенно летом над сушей, но при ясной погоде он в десятки раз больше, чем при пасмурной. В яс­ный полдень летом температура воздуха у поверхности почвы может на 10 °С и более превышать температуру на высоте 2 м. Вследствие этого ВГТ в данном двухметровом слое в пересчете на 100 м составляет более 500°С/100 м. Ветер уменьшает ВГТ, по­скольку при перемешивании воздуха его температура на разных высотах выравнивается. Уменьшают ВГТ облачность и осадки. При влажной почве резко снижается ВГТ в приземном слое атмо­сферы. Над оголенной почвой (паровое поле) ВГТ больше, чем над развитым посевом или лугом. Зимой над снежным покровом ВГТ в приземном слое атмосферы невелик и нередко отрицателен.

С высотой влияние подстилающей поверхности и погоды на ВГТ ослабевает и ВГТ уменьшается по сравнению с его значения-

ми в приземном слое воздуха. Выше 500 м затухает влияние су­точного хода температуры воздуха. На высотах от 1,5 до 5-6км ВГТ находится в пределах 0,5-0,6° С/100 м. На высоте 6-9км ВГТ возрастает и составляет 0,65-0,75° С/100 м. В верхнем слое тропосферы ВГТ снова уменьшается до 0,5-0,2° С/100 м.

Данные о ВГТ в различных слоях атмосферы используют при составлении прогнозов погоды, при метеорологическом обслужи­вании реактивных самолетов и при выводе спутников на орбиту, а также при определении условий выброса и распространения промышленных отходов в атмосфере. Отрицательный ВГТ в при­земном слое воздуха ночью весной и осенью указывает на возмож­ность заморозка.

4.3.2. Распределение температуры воздуха по вертикали

Распределение температуры в атмосфере с высотой называют стратификацией атмосферы. От стратификации атмосферы зави­сит ее устойчивость, т. е. возможность перемещения отдельных объемов воздуха в вертикальном направлении. Такие перемеще­ния больших объемов воздуха происходят почти без обмена теп­лом с окружающей средой, т. е. адиабатически. При этом изме­няется давление и температура перемещающегося объема возду­ха. Если объем воздуха движется вверх, то он переходит в слои с меньшим давлением и расширяется, в результате чего его тем­пература понижается. При опускании воздуха происходит обрат­ный процесс.

Изменение температуры воздуха, ненасыщенного паром (см. раздел 5.1), составляет 0,98° С при адиабатическом перемещении по вертикали на 100 м (практически 1,0°С/100 м). Когда ВГТ< 1,0° С/100 м, то поднимающийся под влиянием внешнего им­пульса объем воздуха при охлаждении на 1°С на высоте 100 м будет холоднее окружающего воздуха и как более плотный нач­нет опускаться в исходное положение. Такое состояние атмосферы характеризует устойчивое равновесие.

При ВГТ =.1,0° С/100 м температура поднимающегося объема воздуха на всех высотах будет равна температуре окружающего воздуха. Поэтому объем воздуха, искусственно поднятый на неко­торую высоту и затем предоставленный самому себе, не будет Далее ни подниматься, ни опускаться. Такое состояние атмосферы называют безразличным.

Если ВГТ> 1,0° С/100 м, то поднимающийся объем воздуха, охлаждаясь на каждые 100 м только на 1,0° С, на всех высотах оказывается теплее окружающей среды, и потому возникшее вер­тикальное движение продолжается. В атмосфере создается неус­тойчивое равновесие. Такое состояние возникает при сильном на­гревании подстилающей поверхности, когда ВГТ растет с высотой. Это способствует дальнейшему развитию конвекции, которая рас-84

пространяется примерно до той высоты, на которой температура поднимающегося воздуха становится равной температуре окружа­ющей среды. При большой неустойчивости возникают мощные ку-чево-дождевые облака, из которых выпадают опасные для посе­вов ливни и град.

В умеренных широтах северного полушария температура у верхней границы тропосферы, т. е. на высоте около 10-12 км, в течение всего года составляет около -50° С. На высоте же 5 км она в июле изменяется от -4° С (на 40° с. ш.) до -12° С (на 60° с. ш.), а в январе на этих же широтах и той же высоте она составляет -20 и -34° С соответственно (табл. 20). В еще более низком (пограничном) слое тропосферы температура еще больше различается в зависимости от географической широты, времени года и характера подстилающей поверхности.

Таблица 20

Среднее распределение температуры воздуха (° С) по высоте в тропосфере в январе и июле над 40 и 60° с.ш.

Температурный режим воздуха

Высота, км

Для сельского хозяйства важнейшее значение имеет темпера­турный режим нижней части приземного слоя атмосферы, при­мерно до высоты 2 м, где находится большинство культурных рас­тений и обитают сельскохо зяйственные животные. I этом слое вертикальные гра диенты почти всех метеоре логических величин очен; велики по сравнению с дру гими слоями. Как уже ука зывалось, ВГТ в приземное слое атмосферы обычно в< много раз превышает ВП в остальной тропосфере В ясные тихие дни, когд< турбулентное перемешива

23 °С

Рис. 18. Распределение температуры в при­земном слое воздуха и в пахотном слое почвы днем (1) и ночью (2).

ние ослаблено, разность температур воздуха у по-

верхности почвы и на высоте 2 м может превышать 10° С. В яс­ные тихие ночи температура воздуха до определенной высоты воз­растает (инверсия) и ВГТ становится отрицательным.

Следовательно, имеются два типа распределения температуры по вертикали в приземном слое атмосферы. Тип, .при котором тем­пература поверхности почвы наибольшая, а от поверхности поки­дается как вверх, так и вниз, называют инсоляционным. Он на­блюдается днем, когда поверхность почвы нагревается прямой солнечной радиацией. Обратное распределение температуры назы­вают радиационным типом, или типом излучения (рис. 18). Этот тип наблюдается обычно ночью, когда поверхность охлаждается в результате эффективного излучения и от нее охлаждаются при­легающие слои воздуха.

В первых разделах мы познакомились в общих чертах со структурой атмосферы по вертикали и с изменениями температуры с высотой.

Здесь рассмотрим некоторые интересные особенности режима температуры в тропосфере и в вышележащих сферах.

Температура и влажность воздуха в тропосфере. Тропосфера является наиболее интересной сферой, поскольку здесь формируются породообразующие процессы. В тропосфере, как уже указывалось в главе I , температура воздуха с высотой понижается в среднем на 6° при поднятии на каждый километр, или на 0,6° на 100 м. Эта величина вертикального градиента температуры наблюдается наиболее часто и определена как средняя из множества измерений. В действительности вертикальный градиент температуры в умеренных широтах Земли изменчив. Он зависит от сезонов года, времени суток, характера атмосферных процессов, а в нижних слоях тропосферы - главным образом от температуры подстилающей поверхности.

В теплое время года, когда прилегающий к поверхности земли слой воздуха достаточно нагрет, характерно понижение температуры с высотой. При сильном прогреве приземного слоя воздуха величина вертикального градиента температуры превышает даже 1° на каждые 100 м поднятия.

Зимой, при сильном охлаждении поверхности земли и приземного слоя воздуха, вместо понижения наблюдается повышение температуры с высотой, т. е. возникает инверсия температуры. Наиболее сильные и мощные инверсии наблюдаются в Сибири, особенно в Якутии зимой, где преобладает ясная и тихая погода, способствующая излучению и последующему охлаждению приземного слоя воздуха. Очень часто инверсия температуры здесь распространяется до высоты 2-3 км, а разность между температурой воздуха у поверхности земли и верхней границы инверсии нередко составляет 20-25°. Инверсии характерны и для центральных районов Антарктиды. Зимой они бывают в Европе, особенно в восточной ее части, Канаде и других районах. От величины изменения температуры с высотой (вертикального градиента температуры) в большой степени зависят условия погоды и виды движений воздуха по вертикальному направлению.

Устойчивая и неустойчивая атмосфера. Воздух в тропосфере нагревается от подстилающей поверхности. Температура воздуха изменяется с высотой и в зависимости от атмосферного давления. Когда это происходит без обмена тепла с окружающей средой, то такой процесс называется адиабатическим. Поднимающийся воздух производит работу за счет внутренней энергии, которая расходуется на преодоление внешнего сопротивления. Поэтому при поднятии воздух охлаждается, а при опускании нагревается.

Адиабатические изменения температуры происходят по сухоадиабатическому и влажноадиабатическому законам. Соответственно различают и вертикальные градиенты изменения температуры с высотой. Сухоадиабатический градиент - это изменение температуры сухого или влажного ненасыщенного воздуха на каждые 100 м поднятия и опускания его на 1°, а влажноадиабатический градиент - это понижение температуры влажного насыщенного воздуха на каждые 100 м поднятия меньше чем на 1°.

При подъеме или опускании сухого, или ненасыщенного, воздуха температура его изменяется по сухоадиабатическому закону, т. е. соответственно падает или растет на 1° каждые 100 м. Эта величина не изменяется до тех пор, пока воздух при поднятии не достигает состояния насыщения, т. е. уровня конденсации водяного пара. Выше этого уровня вследствие конденсации начинает выделяться скрытая теплота парообразования, которая идет на нагревание воздуха. Это дополнительное тепло уменьшает величину охлаждения воздуха при подъеме. Дальнейшее поднятие насыщенного воздуха происходит уже по влажноадиабатическому закону, и температура его понижается не на 1° на 100 м, а меньше. Так как влагосодержание воздуха зависит от его температуры, то, чем выше температура воздуха, тем больше тепла выделяется при конденсации, а чем ниже температура, тем тепла меньше. Поэтому влажноадиабатический градиент в теплом воздухе меньше, чем в холодном. Например, при температуре у поверхности земли поднимающегося насыщенного воздуха +20° влажноадиабатический градиент в нижней тропосфере составляет 0,33-0,43° на 100 м, а при температуре минус 20° значения его колеблются от 0,78° до 0,87° на 100 м.

Влажноадиабатический градиент зависит и от давления воздуха: чем меньше давление воздуха, тем меньше при одной и той же начальной температуре влажноадиабатический градиент. Это происходит оттого, что при малом давлении плотность воздуха также меньше, следовательно, освободившаяся теплота конденсации идет на нагревание меньшей массы воздуха.

В таблице 15 приведены осредненные величины влажноадиабатического градиента при различной температуре и значениях

давления 1000, 750 и 500 мб, что приблизительно соответствует поверхности земли и высотам 2,5-5,5 км.

В теплое время года вертикальный градиент температуры в среднем равен 0,6-0,7° на 100 м поднятия. Зная температуру у поверхности земли, можно вычислить приближенные значения температуры на различных высотах. Если, например, у поверхности земли температура воздуха равна 28°, то, приняв, что вертикальный градиент температуры в среднем равен 0,7° на 100 м или 7° на каждый километр, получим, что на высоте 4 км температура равна 0°. Температурный градиент зимой в средних широтах над сушей редко превышает 0,4-0,5° на 100 м: Нередки случаи, когда в отдельных слоях воздуха температура с высотой почти не изменяется, т. е. имеет место изотермия.

По величине вертикального градиента температуры воздуха можно судить о характере равновесия атмосферы - устойчивое или неустойчивое.

При устойчивом равновесии атмосферы массы воздуха не проявляют тенденции к вертикальным перемещениям. В этом случае если некоторый объем воздуха сместить вверх, то он возвратится в первоначальное положение.

Устойчивое равновесие бывает тогда, когда вертикальный градиент температуры ненасыщенного воздуха меньше сухоадиабатического градиента, а вертикальный градиент температуры насыщенного воздуха меньше влажноадиабатического. Если при этом условии небольшой объем ненасыщенного воздуха воздействием извне поднять на некоторую высоту, то как только прекратится действие внешней силы, этот объем воздуха возвратится в прежнее положение. Происходит это потому, что поднятый объем воздуха, затратив внутреннюю энергию на свое расширение, при подъеме охлаждался на 1° на каждые 100 м (по сухоадиабатическому закону). Но так как вертикальный градиент температуры окружающего воздуха был меньше сухоадиабатического, то оказалось, что поднятый объем воздуха на данной высоте имел более низкую температуру, чем окружающий воздух. Обладая большей плотностью в сравнении с плотностью окружающего воздуха, он должен опускаться, пока не достигнет первоначального состояния. Покажем это на примере.

Предположим, что у поверхности земли температура воздуха равна 20°, а вертикальный градиент температуры в рассматриваемом слое равен 0,7° на 100 м. При этой величине градиента температура воздуха на высоте 2 км будет равна 6° (рис. 19, а). Под воздействием внешней силы поднятый с поверхности земли на эту высоту объем ненасыщенного или сухого воздуха, охлаждаясь по сухоадиабатическому закону, т. е. на 1° на 100 м, охладится на 20° и примет температуру, равную 0°. Этот объем воздуха окажется на 6° холоднее окружающего воздуха, а значит, и тяжелее вследствие большей плотности. Поэтому он начнет


опускаться, стремясь достичь первоначального уровня, т. е. поверхности земли.

Аналогичный результат получится и в случае подъема насыщенного воздуха, если вертикальный градиент температуры окружающей среды меньше влажноадиабатического. Поэтому при устойчивом состоянии атмосферы в однородной массе воздуха не происходит бурное образование кучевых и кучево-дождевых облаков.

Наиболее устойчивое состояние атмосферы наблюдается при небольших величинах вертикального градиента температуры, и особенно при инверсиях, так как в этом случае над нижним холодным, а следовательно и тяжелым, воздухом располагается более теплый и легкий воздух.

При неустойчивом равновесии атмосферы поднятый с поверхности земли объем воздуха не возвращается в первоначальное положение, а сохраняет движение вверх до уровня, на котором выравниваются температуры поднимающегося и окружающего воздуха. Для неустойчивого состояния атмосферы характерны большие вертикальные градиенты температуры, что вызывается нагреванием нижних слоев воздуха. При этом прогретые внизу массы воздуха, как более легкие, устремляются вверх.

Предположим, например, что ненасыщенный воздух в нижних слоях до высоты 2 км стратифицирован неустойчиво, т. е. его температура

с высотой уменьшается на 1,2° на каждые 100 м, а выше воздух, став насыщенным, имеет устойчивую стратификацию, т. е. его температура понижается уже на 0,6° на каждые 100 м поднятия (рис. 19, б). Попав в такую среду, объем сухого ненасыщенного воздуха станет подниматься по сухоадиабатическому закону, т. е. охлаждаться на 1° на 100 м. Тогда, если его температура у поверхности земли 20°, то на высоте 1 км она станет равной 10°, в то время как температура окружающей среды 8°. Будучи теплее на 2°, а следовательно и легче, этот объем устремится выше. На высоте 2 км он будет теплее окружающей среды уже на 4°, так как его температура достигнет 0°, а температура окружающего воздуха равна -4°. Будучи снова легче, рассматриваемый объем воздуха продолжит свой подъем до высоты 3 км, где его температура станет равной температуре окружающей среды (-10°). После этого свободное поднятие выделенного объема воздуха прекратится.

Для определения состояния атмосферы используются аэрологические диаграммы. Это диаграммы с прямоугольными осями координат, по которым отложены характеристики состояния воздуха. На аэрологических диаграммах нанесены семейства сухих и влажных адиабат, т. е. кривые, графически представляющие изменение состояния воздуха при сухоадиабатическом и влажноадиабатическом процессах.

На рисунке 20 представлена такая диаграмма. Здесь по вертикали изображены изобары, по горизонтали - изотермы (линии одинакового давления воздуха), наклонные сплошные линии - сухие адиабаты, наклонные прерывистые - влажные адиабаты, пунктирные - линии удельной влажности . На приведенной диаграмме нанесены кривые изменения температуры воздуха с высотой в двух пунктах в один и тот же срок наблюдения - 15 часов 3 мая 1965 г. Слева - кривая температуры по данным радиозонда, выпущенного в Ленинграде, справа - в Ташкенте. Из формы левой кривой изменения температуры с высотой следует, что в Ленинграде воздух устойчив. При этом до изобарической поверхности 500 мб вертикальный градиент температуры в среднем равен 0,55° на 100 м. В двух небольших слоях (на поверхностях 900 и 700 мб) зарегистрирована изотермия. Это указывает, что над Ленинградом на высотах 1,5-4,5 км находится атмосферный фронт, разделяющий холодные массы воздуха в нижних полутора километрах от теплового воздуха, расположенного выше. Высота уровня конденсации, определяемая положением температурной кривой по отношению к влажной адиабате, находится около 1 км (900 мб).

В Ташкенте воздух имел неустойчивую стратификацию. До высоты 4 км вертикальный градиент температуры был близок к адиабатическому, т. е. на каждые 100 м поднятия температура уменьшалась на 1°, а выше, до 12 км - больше адиабатического. Вследствие сухости воздуха облакообразования не происходило.

Над Ленинградом переход в стратосферу происходил на высоте 9 км (300 мб), а над Ташкентом значительно выше - около 12 км (200 мб).

При устойчивом состоянии атмосферы и достаточной влажности могут образоваться слоистые облака и туманы, а при неустойчивом состоянии и большом влагосодержании атмосферы возникает термическая конвекция, приводящая к образованию кучевых и кучево-дождевых облаков. С состоянием неустойчивости связано образование ливней, гроз, града, малых вихрей, шквала и т. п. Так называемая «болтанка» самолета, т. е. броски самолета при полете, также вызывается неустойчивым состоянием атмосферы.


Летом обычна неустойчивость атмосферы после полудня, когда нагреваются близкие к земной поверхности слои воздуха. Поэтому ливневые дожди, шквалы и подобные опасные явления погоды чаще наблюдаются после полудня, когда вследствие разбивающейся неустойчивости возникают сильные вертикальные токи - восходящие и нисходящие движения воздуха. По этой причине самолеты, летающие днем на высоте 2-5 км над поверхностью земли, больше подвергаются «болтанке», чем при ночном полете, когда вследствие охлаждения приземного слоя воздуха устойчивость его увеличивается.

Влажность воздуха с высотой также уменьшаете. Почти половина всей влажности сосредоточена в первых полутора километрах атмосферы, а в первых пяти километрах содержится почти 9 / 10 всего водяного пара.

Для иллюстрации ежедневно наблюдаемого характера изменения температуры с высотой в тропосфере и нижней стратосфере в различных районах Земли на рисунке 21 приведены три кривые стратификации до высоты 22-25 км. Эти кривые построены по наблюдениям радиозондов в 3 часа дня: две в январе - Олекминск (Якутия) и Ленинград, а третья в июле - Тахта-Базар (Средняя Азия). Для первой кривой (Олекминск) характерно наличие приземной инверсии, характеризующейся повышением температуры от -48° у поверхности земли до -25° на высоте около 1 км. В этот срок тропопауза над Олекминском находилась на высоте 9 км (температура -62°). В стратосфере наблюдалось повышение температуры с высотой, значение которой на уровне 22 км приближалось к -50°. Вторая кривая, представляющая изменение температуры с высотой в Ленинграде, указывает на наличие небольшой приземной инверсии, затем изотермии в большом слое и понижение температуры в стратосфере. На уровне 25 км температура равна -75°. Третья кривая (Тахта-Базар) сильно отличается от северного пункта - Олекминска. Температура у поверхности земли выше 30°. Тропопауза находится на высоте 16 км, а выше 18 км происходит обычное для южного лета повышение температуры с высотой.

— Источник—

Погосян, Х.П. Атмосфера Земли/ Х.П. Погосян [и д.р.]. – М.: Просвещение, 1970.- 318 с.

Post Views: 6 604

Голубая планета...

Эта тема должна была появится на сайте одной из первых. Ведь и вертолеты – атмосферные летательные аппараты. Атмосфера Земли – их, так сказать, среда обитания:-). А физические свойства воздуха как раз и определяют качество этого обитания:-). То есть это одна из основ. И об основе всегда пишут вначале. Но сообразил я об этом только сейчас. Однако лучше, как известно, поздно, чем никогда… Коснемся этого вопроса, в дебри и ненужные сложности однако не залезая:-).

Итак… Атмосфера Земли . Это газовая оболочка нашей голубой планеты. Такое название всем известно. А почему голубая? Просто потому, что «голубая» (а также синяя и фиолетовая) составляющая солнечного света (спектра) наиболее хорошо рассеивается в атмосфере, окрашивая ее тем самым в голубовато-синеватые, иногда с оттенком фиолетового тона (в солнечный день, конечно:-)).

Состав атмосферы Земли.

Состав атмосферы достаточно широк. Перечислять в тексте все составляющие не буду, для этого есть хорошая иллюстрация.Состав всех этих газов практически постоянен, за исключением углекислого газа (СО 2 ). Кроме того в атмосфере обязательно содержится вода в виде паров, взвеси капель или кристаллов льда. Количество воды непостоянно и зависит от температуры и, в меньшей степени, от давления воздуха. Кроме того атмосфера Земли (особенно нынешняя) содержит и определенное количество я бы сказал «всякой гадости»:-). Это SO 2 , NH 3 , CO , HCl , NO , кроме того есть там пары ртути Hg . Правда все это находится там в небольших количествах, слава богу:-).

Атмосферу Земли принято делить на несколько следующих друг за другом по высоте над поверхностью зон.

Первая, самая близкая к земле - это тропосфера . Это самый нижний и, так сказать, основной слой для жизнедеятельности разного вида. В нем содержится 80% массы всего атмосферного воздуха (хотя по объему она составляет всего около 1% всей атмосферы) и около 90% всей атмосферной воды. Основная масса всех ветров, облаков, дождей и снегов 🙂 — оттуда. Тропосфера простирается до высот порядка 18 км в тропических широтах и до 10 км в полярных. Температура воздуха в ней падает с подъемом на высоту примерно 0,65º на каждые 100 м.

Атмосферные зоны.

Зона вторая – стратосфера . Надо сказать, что между тропосферой и стратосферой выделяют еще одну узкую зону – тропопаузу . В ней прекращается падение температуры с высотой. Тропопауза имеет среднюю толщину 1,5- 2 км, но границы ее нечетки и тропосфера часто перекрывает стратосферу.

Так вот стратосфера имеет высоту в среднем от 12 км до 50 км. Температура в ней до 25 км остается неизменной (порядка -57ºС), затем где-то до 40 км повышается примерно до 0ºС и далее до 50 км остается неизменной. Стратосфера – относительно спокойная часть атмосферы земли. Неблагоприятные погодные условия в ней практически отсутствуют. Именно в стратосфере располагается знаменитый озоновый слой на высотах от 15-20 км до 55-60 км.

Далее следует небольшой пограничный слой стратопауза , температура в которой сохраняется около 0ºС, и затем следующая зона мезосфера. Она простирается до высот 80-90 км, и в ней температура падает примерно до 80ºС. В мезосфере обычно становятся видны мелкие метеоры, которые начинают в ней светиться и там же сгорают.

Следующий узкий промежуток – мезопауза и за ней зона термосфера . Ее высота – до 700-800 км. Здесь температура опять начинает повышаться и на высотах порядка 300 км может достигать величин порядка 1200ºС. Далее она остается постоянной. Внутри термосферы до высоты около 400 км расположена ионосфера. Здесь воздух сильно ионизирован из-за воздействия солнечной радиации и обладает большой электропроводностью.

Следующая и, вобщем-то, последняя зона – экзосфера . Это так называемая зона рассеяния . Здесь в основном присутствует очень сильно разреженный водород и гелий (с преобладанием водорода). На высотах порядка 3000 км экзосфера переходит в ближнекосмический вакуум.

Вот примерно где-то так. Почему примерно? Потому что слои эти достаточно условны. Возможны различные изменения высоты, состава газов, воды, величины температуры, ионизации и так далее. Кроме того существует еще немало терминов, определяющих строение и состояние атмосферы земли.

Например гомосфера и гетеросфера . В первой атмосферные газы хорошо перемешаны, и их состав достаточно однороден. Вторая расположена выше первой и такого перемешивания там уже практически нет. Газы в ней разделяет гравитация. Граница между этими слоями расположена на высоте 120 км, и называется она турбопауза .

С терминами пожалуй покончим, но обязательно еще добавлю, что условно принято считать, что граница атмосферы расположена на высоте 100 км над уровнем моря. Эта граница называется Линия Кармана .

Добавлю еще две картинки для иллюстрации строения атмосферы. Первая, правда, на немецком, но зато полная и достаточно легка в понимании:-). Ее можно увеличить и хорошо рассмотреть. Вторая показывает изменение температуры атмосферы с высотой.

Строение атмосферы Земли.

Изменение температуры воздуха с высотой.

Современные пилотируемые орбитальные космические аппараты летают на высотах около 300-400 км . Однако это уже не авиация, хотя область, конечно, в определенном смысле близкородственная, и мы о ней еще непременно поговорим:-).

Зона авиации – это тропосфера. Современные атмосферные летательные аппараты могут летать и в нижних слоях стратосферы. Например практический потолок МИГ-25РБ – 23000 м .

Полет в стратосфере.

И именно физические свойства воздуха тропосферы определяют каким будет полет, насколько будет эффективна система управления самолета, как будет влиять на него турбулентность в атмосфере, как будут работать двигатели.

Первое основное свойство – это температура воздуха . В газодинамике она может определяться по шкале Цельсия либо по шкале Кельвина .

Температура t 1 на заданной высоте Н по шкале Цельсия определяется:

t 1 = t — 6,5Н , где t – температура воздуха у земли.

Температура по шкале Кельвина называется абсолютной температурой , ноль по этой шкале – это абсолютный ноль. При абсолютном нуле прекращается тепловое движение молекул. Абсолютный ноль по шкале Кельвина соответствует -273º по шкале Цельсия.

Соответственно температура Т на высоте Н по шкале Кельвина определяется:

T = 273K + t — 6,5H

Давление воздуха . Атмосферное давление измеряется в Паскалях (Н/м 2), в старой системе измерения в атмосферах (атм.). Существует еще такое понятие как барометрическое давление. Это давление, измеренное в миллиметрах ртутного столба при помощи ртутного барометра. Барометрическое давление (давление на уровне моря) равное 760 мм рт. ст. называется стандартным. В физике 1 атм. как раз и равна 760 мм рт.ст.

Плотность воздуха . В аэродинамике чаще всего пользуются таким понятием, как массовая плотность воздуха. Это масса воздуха в 1 м 3 объема. Плотность воздуха с высотой меняется, воздух становится более разреженным.

Влажность воздуха . Показывает количество воды, находящееся в воздухе. Существует понятие «относительная влажность ». Это отношение массы водяного пара к максимально возможной при данной температуре. Понятие 0%, то есть когда воздух совершенно сухой может существовать вобщем-то только в лаборатории. С другой стороны 100%-ная влажность вполне реальна. Это означает, что воздух впитал в себя всю воду, которую мог впитать. Что-то типа абсолютно «полной губки». Высокая относительная влажность снижает плотность воздуха, а малая, соответственно повышает.

В связи с тем, что полеты самолетов происходят при разных атмосферных условиях, то и их полетные и аэродинамические параметры на одном режиме полета могут быть различными. Поэтому для правильной оценки этих параметров введена Международная стандартная атмосфера (МСА) . Она показывает изменение состояния воздуха с подъемом на высоту.

За основные приняты параметры состояния воздуха при нулевой влажности:

давление P = 760 мм рт. ст. (101,3 кПА);

температура t = +15°C (288 К);

массовая плотность ρ = 1,225 kg/m 3 ;

Для МСА принято (как уже было сказано выше:-)), что температура падает в тропосфере на 0,65º на каждые 100 метров высоты.

Стандартная атмосфера (пример до 10000 м).

Таблицы МСА используются при градуировании приборов, а также для штурманских и инженерных расчетов.

Физические свойства воздуха включают в себя также такие понятия как инертность, вязкость и сжимаемость.

Инертность — свойство воздуха, характеризующее его способность сопротивляться изменению состояния покоя или равномерного прямолинейного движения. Мерой инертности является массовая плотность воздуха. Чем она выше, тем выше инертность и сила сопротивления среды при движении в ней самолета.

Вязкость . Определяет сопротивление трения об воздух при движении самолета.

Сжимаемость определяет изменение плотности воздуха при изменении давления. На малых скоростях движения летательного аппарата (до 450 км/ч) изменения давления при обтекании его воздушным потоком не происходит, но при больших скоростях начинает проявляться эффект сжимаемости. Особенно сказывается его влияние на сверхзвуке. Это отдельная область аэродинамики и тема для отдельной статьи:-).

Ну вот кажется пока все… Пора закончить это слегка нудноватое перечисление, без которого однако не обойтись:-). Атмосфера Земли , ее параметры, физические свойства воздуха также важны для летательного аппарата, как и параметры самого аппарата, и о них нельзя было не упомянуть.

Пока, до следующих встреч и более интересных тем 🙂 …

P.S. На сладкое предлагаю посмотреть ролик снятый из кабины спарки МИГ-25ПУ при его полете в стратосферу. Снимал, видимо, турист, у которого есть деньги для таких полетов:-). Снято в основном все через лобовое стекло. Обратите внимание на цвет неба…

Температура воздуха, безусловно, важный элемент комфортабельности человека. Мне, например, угодить в этом плане очень сложно, зимой я жалуюсь на холод, летом изнываю от жары. Однако этот показатель не статичен, ведь чем выше точка от поверхности Земли, тем там холоднее, но с чем связано подобное положение вещей? Начну с того, что температура - это одно из состояний нашей атмосферы , которая состоит из смеси самых разнообразных газов. Чтобы понять принцип "высотного похолодания", совсем не обязательно углубляться в изучение термодинамических процессов.

Почему изменяется температура воздуха с набором высоты

Еще со времен школьных уроков мне известно, что на вершинах гор и скалистых образований наблюдается снег даже в том случае, если у их подножья достаточно тепло . Это и является главным доказательством того, что на больших высотах может быть очень холодно. Однако не все так категорично и однозначно, дело в том, что при восхождении вверх воздух то остывает, то снова нагревается. Равномерное снижение наблюдается лишь до определенного момента, затем атмосфера в буквальном смысле лихорадит , проходя через следующие этапы:

  1. Тропосфера.
  2. Тропопауза.
  3. Стратосфера.
  4. Мезосфера и т.д.


Температурные колебания в разных слоях

Тропосфера отвечает за большинство погодных явлений , ведь она - самый низкий слой атмосферы, где летают самолеты и образуются облака. Находясь в ней, воздух стабильно замерзает, приблизительно каждые сто метров. Но, достигая тропопаузы, температурные колебания прекращаются и останавливаются в районе -60-70 градусов по Цельсию .


Самое удивительное, что в стратосфере она снижается практически до нуля, поскольку поддается нагреву от ультрафиолетового излучения . В мезосфере тенденция снова идет на снижение, а переход в термосферу сулит рекордный минимум - -225 по Цельсию . Далее происходит снова нагревание воздуха, однако из-за значительной потери в плотности, на этих уровнях атмосферы температура ощущается совсем иначе. По крайней мере, полетам орбитальных искусственных спутников ничто не угрожает.

Практический материал для урока географии в 6 классе - УМК: О.А. Климанова, В.В. Климанов, Э.В. Ким. Для рассмотрения предлагаются задачи по теме «Температура воздуха».

Решение географических задач способствует активному усвоению курса географии, формирует общеучебные и специальные географические навыки.

Цели:

Развитие умений высчитывать температуру воздуха на разных высотах, вычислять высоту;

Развитие способностей анализировать, делать выводы.

Как изменяется температура с высотой?

При изменении высоты на 1000 метров (1 км) температура воздуха изменяется на 6°С (при увеличении высоты температура воздуха понижается, а при уменьшении - повышается).

Географические задачи:

1.На вершине горы температура -5 градусов высота горы 4500 м. Определите температуру у подножия горы?

Решение:

На каждый километр вверх температура воздуха понижается на 6 градусов, то есть, если высота горы 4500 или 4,5 км получается, что:

1) 4,5 х 6 = 27 градусов. Это значит, что на 27 градусов понизилась температура, а если на вершине - 5 градусов, то у подножия горы будет:

2) - 5 + 27 = 22 градуса у подножия горы

Ответ: 22 градуса у подножия горы

2.Определите температуру воздуха на вершине горы 3 км, если у подножия горы она составила + 12 градусов.

Решение:

Если через 1 км температура понижается на 6 градусов, следовательно

Ответ: - 6 градусов на вершине горы

3. На какую высоту поднялся самолет, если за его бортом температура -30°С, а у поверхности Земли +12°С?

Решение:

2) 42: 6 = 7 км

Ответ: самолёт поднялся на высоту 7 км

4. Какова температура воздуха на вершине Памире, если в июле у подножия она составляет +36°С? Высота Памира 6 км.

Решение:

Ответ: 0 градусов на вершине горы

5. Определите температуру воздуха за бортом самолета, если температура воздуха у поверхности земли равна 31 градус, а высота полета - 5 км?

Решение:

Ответ : 1 градус температура за бортом самолета