Аксессуары

Управление движением и навигация специальность. Специальность "Системы управления движением и навигация" (бакалавриат)

Титан занимает 4-е место по распространению в производстве, но эффективная технология его извлечения была разработана только в 40-х гг прошлого века. Это металл серебристого цвета, характеризующийся небольшой удельной массой и уникальными характеристиками. Для анализа степени распространения в промышленности и других сферах необходимо озвучить свойства титана и области применения его сплавов.

Основные характеристики

Металл обладает малой удельной массой – всего 4.5 г/см³. Антикоррозийные качества обусловлены устойчивой оксидной пленкой, образующейся на поверхности. Благодаря этому качеству титан не изменяет своих свойств при длительном нахождении в воде, соляной кислоте. Не возникают поврежденные участки из-за воздействия напряжения, что является основной проблемой стали.

В чистом виде титан обладает следующими качествами и характеристиками:

  • номинальная температура плавления — 1 660°С;
  • при термическом воздействии +3 227°С закипает;
  • предел прочности при растяжении – до 450 МПа;
  • характеризуется небольшим показателем упругости – до 110,25 ГПа;
  • по шкале НВ твердость составляет 103;
  • предел текучести один из самых оптимальных среди металлов – до 380 Мпа;
  • теплопроводность чистого титана без добавок – 16,791 Вт/м*С;
  • минимальный коэффициент термического расширения;
  • этот элемент является парамагнитом.

Для сравнения, прочность этого материала в 2 раза больше, чем у чистого железа и в 4 раза такого же показателя алюминия. Также титан имеет две полиморфные фазы – низкотемпературную и высокотемпературную.

Для производственных нужд чистый титан не применяется из-за его дороговизны и требуемых эксплуатационных качеств. Для повышения жесткости в состав добавляют оксиды, гибриды и нитриды. Реже изменяют характеристики материала для улучшения стойкости к коррозии. Основные виды добавок для получения сплавов: сталь, никель, алюминий. В некоторых случаях он выполняет функции дополнительного компонента.

Области применения

Благодаря небольшой удельной массе и прочностным параметрам титан широко используется в авиационной и космической промышленности. Его применяют в качестве основного конструкционного материала в чистом виде. В особых случаях за счет уменьшения жаропрочности делают более дешевые сплавы. При этом его сопротивление коррозии и механическая прочность остаются неизменными.

Кроме этого, материал с добавками титана нашел применение в следующих областях:

  • Химическая промышленность. Его стойкость практически ко всем агрессивным средам, кроме органических кислот, позволяет изготавливать сложное оборудование с хорошими показателями безремонтного срока службы.
  • Производство транспортных средств. Причина – небольшая удельная масса и механическая прочность. Из него делают каркасы или несущие элементы конструкций.
  • Медицина. Для особых целей применяется специальный сплав нитинол (титан и никель). Его отличительное свойство – память формы. Для уменьшения нагрузки пациентов и минимизации вероятности негативного воздействия на организм многие медицинские шины и подобные им устройства делают из титана.
  • В промышленности металл применяется для изготовления корпусов и отдельных элементов оборудования.
  • Ювелирные украшения из титана обладают уникальным внешним видом и качествами.

В большинстве случаев материал обрабатывается в заводских условиях. Но есть ряд исключений – зная свойства этого материала, часть работ по изменению внешнего вида изделия и его характеристик можно выполнять в домашней мастерской.

Особенности обработки

Для придания изделию нужной формы необходимо использовать специальное оборудование – токарный и фрезерный станок. Ручное резание или фрезеровка титана невозможна из-за его твердости. Помимо выбора мощности и других характеристик оборудования необходимо правильно подобрать режущие инструменты: фрезы, резцы, развертки, сверла и т.д.

При этом учитываются такие нюансы:

  • Титановая стружка легко воспламеняется. Необходимо принудительное охлаждение поверхности детали и работа на минимальных скоростях.
  • Гибка изделия выполняется только после предварительного разогрева поверхности. В противном случае велика вероятность появления трещин.
  • Сварка. Обязательно соблюдение особых условий.

Титан – уникальный материал с хорошими эксплуатационными и техническими качествами. Но для его обработки следует знать специфику технологии, а главное – технику безопасности.

Тита́н (лат. Titanium; обозначается символом Ti) - элемент побочной подгруппы четвёртой группы, четвёртого периода периодической системы химических элементов , с атомным номером 22. Простое вещество титан (CAS-номер: 7440-32-6) - лёгкий металл серебристо-белого цвета.

История

Открытие TiO 2 сделали практически одновременно и независимо друг от друга англичанин У. Грегор и немецкий химик М. Г. Клапрот. У. Грегор, исследуя состав магнитного железистого песка (Крид, Корнуолл, Англия, 1789), выделил новую «землю» (окись) неизвестного металла, которую назвал менакеновой. В 1795 г. немецкий химик Клапрот открыл в минерале рутиле новый элемент и назвал его титаном. Спустя два года Клапрот установил, что рутил и менакеновая земля - окислы одного и того же элемента, за которым и осталось название «титан», предложенное Клапротом. Через 10 лет открытие титана состоялось в третий раз. Французский учёный Л. Воклен обнаружил титан в анатазе и доказал, что рутил и анатаз - идентичные окислы титана.
Первый образец металлического титана получил в 1825 году Й. Я. Берцелиус. Из-за высокой химической активности титана и сложности его очистки чистый образец Ti получили голландцы А. ван Аркел и И. де Бур в 1925 году термическим разложением паров иодида титана TiI 4 .

Происхождение названия

Металл получил своё название в честь титанов, персонажей древнегреческой мифологии, детей Геи. Название элементу дал Мартин Клапрот, в соответствии со своими взглядами на химическую номенклатуру в противоход французской химической школе, где элемент старались называть по его химическим свойствам. Поскольку немецкий исследователь сам отметил невозможность определения свойств нового элемента только по его оксиду, он подобрал для него имя из мифологии, по аналогии с открытым им ранее ураном.
Однако согласно другой версии, публиковавшейся в журнале «Техника-Молодежи» в конце 1980-х, новооткрытый металл обязан своим именем не могучим титанам из древнегреческих мифов, а Титании - королеве фей в германской мифологии (жена Оберона в шекспировском «Сне в летнюю ночь»). Такое название связано с необычайной «лёгкостью» (малой плотностью) металла.

Получение

Как правило, исходным материалом для производства титана и его соединений служит диоксид титана со сравнительно небольшим количеством примесей. В частности, это может быть рутиловый концентрат, получаемый при обогащении титановых руд. Однако запасы рутила в мире весьма ограничены, и чаще применяют так называемый синтетический рутил или титановый шлак, получаемые при переработке ильменитовых концентратов. Для получения титанового шлака ильменитовый концентрат восстанавливают в электродуговой печи, при этом железо отделяется в металлическую фазу (чугун), а невосстановленные оксиды титана и примесей образуют шлаковую фазу. Богатый шлак перерабатывают хлоридным или сернокислотным способом.
Концентрат титановых руд подвергают сернокислотной или пирометаллургической переработке. Продукт сернокислотной обработки - порошок диоксида титана TiO 2 . Пирометаллургическим методом руду спекают с коксом и обрабатывают хлором, получая пары тетрахлорида титана TiCl 4:
TiO 2 + 2C + 2Cl 2 =TiCl 2 + 2CO

Образующиеся пары TiCl 4 при 850 °C восстанавливают магнием:
TiCl 4 + 2Mg = 2MgCl 2 + Ti

Полученную титановую «губку» переплавляют и очищают. Рафинируют титан иодидным способом или электролизом, выделяя Ti из TiCl 4 . Для получения титановых слитков применяют дуговую, электроннолучевую или плазменную переработку.

Физические свойства

Титан - легкий серебристо-белый металл. Существует в двух кристаллических модификациях: α-Ti с гексагональной плотноупакованной решёткой, β-Ti с кубической объёмноцентрированной упаковкой, температура полиморфного превращения α↔β 883 °C.
Имеет высокую вязкость, при механической обработке склонен к налипанию на режущий инструмент, и поэтому требуется нанесение специальных покрытий на инструмент, различных смазок.
При обычной температуре покрывается защитной пассивирующей плёнкой оксида TiO 2 , благодаря этому коррозионностоек в большинстве сред (кроме щелочной).
Титановая пыль имеет свойство взрываться. Температура вспышки 400 °C. Титановая стружка пожароопасна.

1941 Температура кипения 3560 Уд. теплота плавления 18,8 кДж/моль Уд. теплота испарения 422,6 кДж/моль Молярная теплоёмкость 25,1 Дж/(K·моль) Молярный объём 10,6 см ³/моль Кристаллическая решётка простого вещества Структура решётки гексагональная
плотноупакованная (α-Ti) Параметры решётки a=2,951 с=4,697 (α-Ti) Отношение c /a 1,587 Температура Дебая 380 Прочие характеристики Теплопроводность (300 K) 21,9 Вт/(м·К) Номер CAS 7440-32-6

Энциклопедичный YouTube

    1 / 5

    ✪ Титан / Titanium. Химия – просто

    ✪ Титан - САМЫЙ ПРОЧНЫЙ МЕТАЛЛ НА ЗЕМЛЕ!

    ✪ Химия 57. Элемент титан. Элемент ртуть - Академия занимательных наук

    ✪ Производство титана. Титан один из самых прочных металлов в мире!

    ✪ Иридий - Самый РЕДКИЙ металл на Земле!

    Субтитры

    Всем привет! С вами Александр Иванов и это проект «Химия – просто» И сейчас мы немного зажжем с титаном! Вот так выглядят несколько грамм чистого титана, которые были получены давным давно в манчестерском университете, когда он ещё даже не был университетом Этот образец из того самого музея А вот так выглядит основной минерал, из которого добывают титан Это Рутил Всего известно более 100 минералов, которые содержат титан В 1867 году, все что было известно людям о титане, умещалось в учебнике на 1 странице К началу 20 века, ничего особо не изменилось В 1791 году английский химик и минеролог Уильям Грегор в минерале менакините открыл новый элемент и назвал его «менакином» Чуть позже, в 1795 году немецкий химик Мартин Клапрот, открыл новый химический элемент в другом минерале – рутиле Своё название титан получил от Клапрота, который назвал его в честь царицы эльфов Титании Однако по другой версии название элемента происходит от титанов, могучих сыновей богини земли – Геи Однако, в 1797 году выяснилось, что Грегор и Клапрот открыли один и тот же химический элемент Но название осталось то, которое дал Клапрот Но, ни Грегор, ни Клапрот не смогли получить металлический титан Они получили белый кристаллический порошок, который был двуокисью титана Впервые металлический титан был получен русским ученым Д.К. Кириловым в 1875 году Но как это бывает без должного освещения, его работа была не замечена После этого чистый титан получали шведы Л. Нильсон и О. Петерсон, а также француз Муассан И лишь в 1910 году американский химик М. Хантер усовершенствовал предыдущие способы получения титана и получил несколько граммов чистого 99% титана Именно поэтому в большинстве книг именно Хантер указывается, как ученый, получивший металлический титан Большого будущего титану никто не пророчил, так как малейшие примеси в его составе, делали его очень хрупким и непрочным, что не позволяло проводить механическую обработку Поэтому некоторые соединения титана нашли свое широкое применение раньше, чем сам металл Четыреххлористый титан использовался в первую мировую войну для создания дымовых завес На открытом воздухе тетрахлорид титана гидролизуется с образование оксихлоридов титана и оксида титана Белый дым, который мы видим – это и есть частицы оксихлоридов и оксида титана То что это именно частицы можно подтвердить, если мы капнем несколько капель тетрахлорида титана в воду Тетрахлорид титана в настоящее время используется для получения металлического титана Метод получения чистого титана за сто лет не изменился Сначала двуокись титана с помощью хлора переводят в четыреххлористый титан, о котором мы говорили ранее Затем, при помощи магнийтермии, из четыреххлористого титана получают металлический титан, который образуется в виде губки Данный процесс проводится при температуре 900°С в стальных ретортах Из-за жестких условий проведения реакции, у нас к сожалению нет возможности показать данный процесс В итоге получается титановая губка, которую переплавляют в компактный металл Для получения сверхчистого титана используют метод иодидного рафинирования, о котором мы подробно расскажем в видео о цирконии Как вы уже заметили, тетрахлорид титана – это прозрачная бесцветная жидкость при нормальных условиях Но если мы возьмем трихлорид титана, то это твердое фиолетовое вещество Всего на один атом хлора меньше в молекуле, и уже другое состояние Трихлорид титана гигроскопичен. Поэтому работать с ним можно только в инертной атмосфере Трихлорид титана хорошо растворяется в соляной кислоте Этот процесс вы сейчас и наблюдаете В растворе образуется комплексный ион 3– Что такое комплексные ионы, расскажу как-нибудь в следующий раз. А пока просто ужасайтесь:) Если к полученному раствору добавить немного азотной кислоты, то происходит образование нитрата титана и выделение бурого газа, что мы собственно и видим Существует качественная реакция на ионы титана Капнем пероксид водорода Как видите, происходит реакция с образованием ярко-окрашенного соединения Это надтитановая кислота В 1908 году в США стали использовать Двуокись титана для производства белил, которые пришли на смену белилам, в основе которых лежали свинец и цинк Титановый белила сильно превосходили по качеству свинцовые и цинковые аналоги Также оксид титана применяли для производства эмали, которые использовали для покрытия металла и дерева в судостроении В настоящее время диоксид титана применяют в пищевой промышленности как белый краситель – это добавка Е171, которую можно встретить в крабовых палочках, сухих завтраках, майонезе, жевательной резинке, молочных продуктах и т.п Также диоксид титана используют в косметике – он входит в состав крема для защиты от загара «Не все то золото, что блестит» – эту поговорку мы знаем с детства И по отношению к современной церкви и титану она работает в буквальном смысле И вроде бы, что общего может быть между церковью и титаном? А вот что: все современные купола церквей, которые переливаются золотом, на самом деле к золоту не имеют никакого отношения В действительности все купола покрыты нитридом титана Также нитридом титана покрывают сверла по металлу Только в 1925 году был получен титан высокой чистоты, что позволило изучить его физико-химические свойства И они оказались фантастическими Оказалось, что титан, будучи почти вдвое легче железа, по прочности превосходит многие стали Также, титан хотя в полтора раза тяжелее алюминия, но зато в шесть раз прочнее его и сохраняет свою прочность до 500°С Из-за своей высокой электропроводности и немагнитности, титан имеет высокий интерес в электротехнике Титан имеет высокую устойчивость к коррозии Благодаря своим свойствам титан стал материалом космических технологий В России в Верхней Салде находится корпорация ВСМПО-АВИСМА, которая производит титан для мировой авиакосмической промышленности Из Верхне Салдинского титана делают боинги, аэрбасы, роллс-ройсы, различное химическое оборудование и множество другого дорогостоящего барахла Однако, каждый из вас может приобрести лопату или ломик из чистого титана! И это не шутка! А вот так реагирует мелкодисперсный порошок титана с кислородом воздуха Благодаря такому красочному горению, титан нашел применение в пиротехнике А на этом все, подписывайтесь, ставьте палец вверх, не забывайте поддерживать проект и рассказывать друзьям! Пока!

История

Открытие TiO 2 сделали практически одновременно и независимо друг от друга англичанин У. Грегор ?! и немецкий химик М. Г. Клапрот . У. Грегор, исследуя состав магнитного железистого песка (Крид, Корнуолл, Англия, ), выделил новую «землю» (оксид) неизвестного металла, которую назвал менакеновой. В 1795 г. немецкий химик Клапрот открыл в минерале рутиле новый элемент и назвал его титаном. Спустя два года Клапрот установил, что рутил и менакеновая земля - оксиды одного и того же элемента, за которым и осталось название «титан», предложенное Клапротом. Через 10 лет открытие титана состоялось в третий раз. Французский учёный Л. Воклен обнаружил титан в анатазе и доказал, что рутил и анатаз - идентичные оксиды титана.

Первый образец металлического титана получил в 1825 году Й. Я. Берцелиус . Из-за высокой химической активности титана и сложности его очистки чистый образец Ti получили голландцы А. ван Аркел и И. де Бур в 1925 году термическим разложением паров иодида титана TiI 4 .

Происхождение названия

Металл получил своё название в честь титанов , персонажей древнегреческой мифологии, детей Геи . Название элементу дал Мартин Клапрот в соответствии со своими взглядами на химическую номенклатуру в противовес французской химической школе, где элемент старались называть по его химическим свойствам. Поскольку немецкий исследователь сам отметил невозможность определения свойств нового элемента только по его оксиду, он подобрал для него имя из мифологии, по аналогии с открытым им ранее ураном .

Нахождение в природе

Титан находится на 10-м месте по распространённости в природе. Содержание в земной коре - 0,57 % по массе, в морской воде - 0,001 мг/л . В ультраосновных породах 300 г/т, в основных - 9 кг/т, в кислых 2,3 кг/т, в глинах и сланцах 4,5 кг/т. В земной коре титан почти всегда четырёхвалентен и присутствует только в кислородных соединениях. В свободном виде не встречается. Титан в условиях выветривания и осаждения имеет геохимическое сродство с Al 2 O 3 . Он концентрируется в бокситах коры выветривания и в морских глинистых осадках. Перенос титана осуществляется в виде механических обломков минералов и в виде коллоидов . До 30 % TiO 2 по весу накапливается в некоторых глинах. Минералы титана устойчивы к выветриванию и образуют крупные концентрации в россыпях. Известно более 100 минералов, содержащих титан. Важнейшие из них: рутил TiO 2 , ильменит FeTiO 3 , титаномагнетит FeTiO 3 + Fe 3 O 4 , перовскит CaTiO 3 , титанит CaTiSiO 5 . Различают коренные руды титана - ильменит-титаномагнетитовые и россыпные - рутил-ильменит-цирконовые.

Месторождения

Месторождения титана находятся на территории ЮАР, России, Украины, Китая, Японии, Австралии, Индии, Цейлона, Бразилии, Южной Кореи, Казахстана . В странах СНГ ведущее место по разведанным запасам титановых руд занимает РФ (58,5 %) и Украина (40,2 %) . Крупнейшее месторождение в России - Ярегское .

Запасы и добыча

На 2002 год, 90 % добываемого титана использовалось на производство диоксида титана TiO 2 . Мировое производство диоксида титана составляло 4,5 млн т. в год. Подтверждённые запасы диоксида титана (без России) составляют около 800 млн т. На 2006 год, по оценке Геологической службы США, в пересчёте на диоксид титана и без учёта России, запасы ильменитовых руд составляют 603-673 млн т., а рутиловых - 49,7-52,7 млн т . Таким образом, при нынешних темпах добычи мировых разведанных запасов титана (без учёта России) хватит более, чем на 150 лет.

Россия обладает вторыми в мире, после Китая, запасами титана. Минерально-сырьевую базу титана России составляют 20 месторождений (из них 11 коренных и 9 россыпных), достаточно равномерно рассредоточенных по территории страны. Самое крупное из разведанных месторождений (Ярегское) находится в 25 км от города Ухта (Республика Коми). Запасы месторождения оцениваются в 2 миллиарда тонн руды со средним содержанием диоксида титана около 10 % .

Крупнейший в мире производитель титана - российская компания «ВСМПО-АВИСМА » .

Получение

Как правило, исходным материалом для производства титана и его соединений служит диоксид титана со сравнительно небольшим количеством примесей. В частности, это может быть рутиловый концентрат, получаемый при обогащении титановых руд. Однако запасы рутила в мире весьма ограничены, и чаще применяют так называемый синтетический рутил или титановый шлак , получаемые при переработке ильменитовых концентратов. Для получения титанового шлака ильменитовый концентрат восстанавливают в электродуговой печи, при этом железо отделяется в металлическую фазу (чугун), а не восстановленные оксиды титана и примесей образуют шлаковую фазу. Богатый шлак перерабатывают хлоридным или сернокислотным способом.

Концентрат титановых руд подвергают сернокислотной или пирометаллургической переработке. Продукт сернокислотной обработки - порошок диоксида титана TiO 2 . Пирометаллургическим методом руду спекают с коксом и обрабатывают хлором , получая пары тетрахлорида титана TiCl 4:

T i O 2 + 2 C + 2 C l 2 → T i C l 4 + 2 C O {\displaystyle {\mathsf {TiO_{2}+2C+2Cl_{2}\rightarrow TiCl_{4}+2CO}}}

Образующиеся пары TiCl 4 при 850 °C восстанавливают магнием :

T i C l 4 + 2 M g → 2 M g C l 2 + T i {\displaystyle {\mathsf {TiCl_{4}+2Mg\rightarrow 2MgCl_{2}+Ti}}}

Кроме этого в настоящее время начинает получать популярность так называемый процесс FFC Cambridge, названный по именам его разработчиков Дерека Фрэя, Тома Фартинга и Джорджа Чена и Кембриджского университета , где он был создан. Этот электрохимический процесс позволяет осуществлять прямое непрерывное восстановление титана из оксида в расплаве смеси хлорида кальция и негашёной извести . В этом процессе используется электролитическая ванна, наполненная смесью хлорида кальция и извести, с графитовым расходуемым (либо нейтральным) анодом и катодом, изготовленным из подлежащего восстановлению оксида. При пропускании через ванну тока температура быстро достигает ~1000-1100°C, и расплав оксида кальция разлагается на аноде на кислород и металлический кальций:

2 C a O → 2 C a + O 2 {\displaystyle {\mathsf {2CaO\rightarrow 2Ca+O_{2}}}}

Полученный кислород окисляет анод (в случае использования графита), а кальций мигрирует в расплаве к катоду, где и восстанавливает из оксида титан:

O 2 + C → C O 2 {\displaystyle {\mathsf {O_{2}+C\rightarrow CO_{2}}}} T i O 2 + 2 C a → T i + 2 C a O {\displaystyle {\mathsf {TiO_{2}+2Ca\rightarrow Ti+2CaO}}}

Образующийся оксид кальция вновь диссоциирует на кислород и металлический кальций и процесс повторяется вплоть до полного преобразования катода в титановую губку, либо исчерпания оксида кальция. Хлорид кальция в данном процессе используется как электролит для придания электропроводности расплаву и подвижности активным ионам кальция и кислорода. При использовании инертного анода (например, оксида олова), вместо углекислого газа на аноде выделяется молекулярный кислород, что меньше загрязняет окружающую среду, однако процесс в таком случае становится менее стабильным, и, кроме того, в некоторых условиях более энергетически выгодным становится разложение хлорида, а не оксида кальция, что приводит к высвобождению молекулярного хлора .

Полученную титановую «губку» переплавляют и очищают. Рафинируют титан иодидным способом или электролизом , выделяя Ti из TiCl 4 . Для получения титановых слитков применяют дуговую, электроннолучевую или плазменную переработку.

Физические свойства

Титан - легкий серебристо-белый металл . Существует в двух кристаллических модификациях: α-Ti с гексагональной плотноупакованной решёткой (a=2,951 Å; с=4,679 Å ; z=2; пространственная группа C6mmc ), β-Ti с кубической объёмно-центрированной упаковкой (a=3,269 Å; z=2; пространственная группа Im3m ), температура перехода α↔β 883 °C, ΔH перехода 3,8 кДж/моль. Точка плавления 1660±20 °C, точка кипения 3260 °C, плотность α-Ti и β-Ti соответственно равна 4,505 (20 °C) и 4,32 (900 °C) г/см³ , атомная плотность 5,71⋅10 22 ат/см³ [ ] . Пластичен, сваривается в инертной атмосфере. Удельное сопротивление 0,42 мкОм·м при 20 °C

Имеет высокую вязкость, при механической обработке склонен к налипанию на режущий инструмент, и поэтому требуется нанесение специальных покрытий на инструмент, различных смазок .

При обычной температуре покрывается защитной пассивирующей плёнкой оксида TiO 2 , благодаря этому коррозионностоек в большинстве сред (кроме щелочной).

Титановая пыль имеет свойство взрываться. Температура вспышки - 400 °C. Титановая стружка пожароопасна.

Титан, наряду с сталью, вольфрамом и платиной обладает высокой устойчивостью в вакууме, что, наряду с его лёгкостью делает его очень перспективным при конструировании космических кораблей .

Химические свойства

Титан устойчив к разбавленным растворам многих кислот и щелочей (кроме , H 3 PO 4 и концентрированной H 2 SO 4).

Легко реагирует даже со слабыми кислотами в присутствии комплексообразователей, например, с плавиковой кислотой он взаимодействует благодаря образованию комплексного аниона 2− . Титан наиболее подвержен коррозии в органических средах, так как, в присутствии воды на поверхности титанового изделия образуется плотная пассивная пленка из оксидов и гидрида титана. Наиболее заметное повышение коррозионной стойкости титана заметно при повышении содержания воды в агрессивной среде с 0,5 до 8,0%, что подтверждается электрохимическими исследованиями электродных потенциалов титана в растворах кислот и щелочей в смешанных водно-органических средах.

При нагревании на воздухе до 1200 °C Ti загорается ярким белым пламенем с образованием оксидных фаз переменного состава TiO x . Из растворов солей титана осаждается гидроксид TiO(OH) 2 ·xH 2 O, осторожным прокаливанием которого получают оксид TiO 2 . Гидроксид TiO(OH) 2 ·xH 2 O и диоксид TiO 2 амфотерны .

Применение

В чистом виде и в виде сплавов

  • Титан в виде сплавов является важнейшим конструкционным материалом в авиа- и ракетостроении, в кораблестроении.
  • Металл применяется в: химической промышленности (реакторы , трубопроводы , насосы , трубопроводная арматура), военной промышленности (бронежилеты, броня и противопожарные перегородки в авиации, корпуса подводных лодок), промышленных процессах (опреснительных установках, процессах целлюлозы и бумаги), автомобильной промышленности, сельскохозяйственной промышленности, пищевой промышленности, украшениях для пирсинга , медицинской промышленности (протезы, остеопротезы), стоматологических и эндодонтических инструментах, зубных имплантатах , спортивных товарах, ювелирных изделиях, мобильных телефонах, лёгких сплавах и т. д.
  • Титановое литьё выполняют в вакуумных печах в графитовые формы. Также используется вакуумное литьё по выплавляемым моделям. Из-за технологических трудностей в художественном литье используется ограниченно. Первой в мировой практике монументальной литой скульптурой из титана является памятник Юрию Гагарину на площади его имени в Москве .
  • Титан является легирующей добавкой во многих легированных сталях и большинстве спецсплавов [каких? ] .
  • Нитинол (никель-титан) - сплав, обладающий памятью формы, применяемый в медицине и технике.
  • Алюминиды титана являются очень стойкими к окислению и жаропрочными, что, в свою очередь, определило их использование в авиации и автомобилестроении в качестве конструкционных материалов.
  • Титан является одним из наиболее распространённых геттерных материалов , используемых в высоковакуумных насосах .

В виде соединений

  • Белый диоксид титана (TiO 2) используется в красках (например, титановые белила), а также при производстве бумаги и пластика. Пищевая добавка E171 .
  • Титанорганические соединения (например, тетрабутоксититан) применяются в качестве катализатора и отвердителя в химической и лакокрасочной промышленности.
  • Неорганические соединения титана применяются в химической электронной, стекловолоконной промышленности в качестве добавки или покрытий.
  • Карбид титана, диборид титана, карбонитрид титана - важные компоненты сверхтвёрдых материалов для обработки металлов.
  • Нитрид титана применяется для покрытия инструментов, куполов церквей и при производстве бижутерии, так как имеет цвет, похожий на золото.
  • Титанат бария BaTiO 3 , титанат свинца PbTiO 3 и ряд других титанатов - сегнетоэлектрики .

Существует множество титановых сплавов с различными металлами. Легирующие элементы разделяют на три группы, в зависимости от их влияния на температуру полиморфного превращения: на бета-стабилизаторы, альфа-стабилизаторы и нейтральные упрочнители. Первые понижают температуру превращения, вторые повышают, третьи не влияют на неё, но приводят к растворному упрочнению матрицы. Примеры альфа-стабилизаторов: алюминий, кислород, углерод, азот. Бета-стабилизаторы: молибден, ванадий, железо, хром, никель. Нейтральные упрочнители: цирконий, олово, кремний. Бета-стабилизаторы, в свою очередь, делятся на бета-изоморфные и бета-эвтектоидообразующие.

Самым распространённым титановым сплавом является сплав Ti-6Al-4V (в российской классификации - ВТ6).

Анализ рынков потребления

Чистота и марка чернового титана (титановой губки) обычно определяется по его твёрдости, которая зависит от содержания примесей. Наиболее распространены марки ТГ100 и ТГ110 [ ] .

Физиологическое действие

Как было сказано выше, титан применяется также в стоматологии. Отличительная черта применения титана заключается не только в прочности, но и способности самого металла сращиваться с костью , что даёт возможность обеспечить квазимонолитность основы зуба.

Изотопы

Природный титан состоит из смеси пяти стабильных изотопов: 46 Ti (7,95%), 47 Ti (7,75%), 48 Ti (73,45%), 49 Ti (5,51%), 50 Ti (5,34%).

Известны искусственные радиоактивные изотопы 45 Ti (T ½ = 3,09 ч), 51 Ti (Т ½ = 5,79 мин) и другие.

Примечания

  1. Michael E. Wieser, Norman Holden, Tyler B. Coplen, John K. Böhlke, Michael Berglund, Willi A. Brand, Paul De Bièvre, Manfred Gröning, Robert D. Loss, Juris Meija, Takafumi Hirata, Thomas Prohaska, Ronny Schoenberg, Glenda O’Connor, Thomas Walczyk, Shige Yoneda, Xiang‑Kun Zhu. Atomic weights of the elements 2011 (IUPAC Technical Report) (англ.) // Pure and Applied Chemistry . - 2013. - Vol. 85 , no. 5 . - P. 1047-1078 . - DOI :10.1351/PAC-REP-13-03-02 .
  2. Редкол.:Зефиров Н. С. (гл. ред.). Химическая энциклопедия: в 5 т. - Москва: Советская энциклопедия, 1995. - Т. 4. - С. 590-592. - 639 с. - 20 000 экз. - ISBN 5-85270-039-8.
  3. Титан - статья из Физической энциклопедии
  4. J.P. Riley and Skirrow G. Chemical Oceanography V. 1, 1965
  5. Месторождение титана .
  6. Месторождение титана .
  7. Ильменит, рутил, титаномагнетит - 2006 г.
  8. Титан (неопр.) . Информационно-аналитический центр "Минерал". Дата обращения 19 ноября 2010. Архивировано 21 августа 2011 года.
  9. Корпорация ВСМПО-АВИСМА
  10. Koncz, St; Szanto, St.; Waldhauser, H., Der Sauerstoffgehalt von Titan-jodidstäben, Naturwiss. 42 (1955) pp.368-369
  11. Титан - металл будущего (рус.) .
  12. Титан - статья из Химической энциклопедии
  13. Влияние воды на процесс пассивации титана - 26 Февраля 2015 - Химия и химическая технология в жизни (неопр.) . www.chemfive.ru. Дата обращения 21 октября 2015.
  14. Искусство литья в ХХ веке
  15. На мировом рынке титана за последние два месяца цены стабилизировались (обзор)

Ссылки

  • Титан в Популярной библиотеке химических элементов

Описание

Освоение дисциплин по данному профилю позволит по окончании обучения студентам:

  • анализировать подвижные аппараты, используя существующие методики как объекты стабилизации, электроэнергетики, управления и ориентации;
  • моделировать процессы и отдельные устройства, применяя стандартные пакеты прикладных программ;
  • осваивать и доводить технологические процессы в процессе подготовки к производственному запуску новых изделий;
  • монтировать устройства и электроэнергетические, пилотажные, навигационные узлы на оборудовании;
  • испытывать и сдавать в эксплуатацию комплексы и системы;
  • проводить эксперименты и предварительный анализ результатов;
  • регулировать, настраивать и проверять оборудование на промышленных предприятиях и испытательных полигонах;
  • осуществлять наблюдения и измерения, а также составлять описания исследований;
  • контролировать соблюдение норм экологической безопасности.

Кем работать

Образование инженера позволяет работать с различными навигационными и летательными аппаратами. Выпускники смогут самостоятельно разрабатывать конструкции, учитывая технологические особенности и поставленные требования. Многие стремятся попасть на должность помощника инженера-конструктора. Практическое применение полученных в ВУЗе навыков позволит активно испытывать новые приборы и системы ориентации. Знания в области математики и механики помогут в создании принципиально новых устройств и модернизации используемого оборудования. Как правило, бакалавров без труда принимают в различные НИИ и проектные бюро.