Шyбы

Понятне об устройстве торпед. Торпедное оружие Тактические свойства торпедного оружия

Торпедные двигатели: вчера и сегодня

ОАО «НИИ мортеплотехники» осталось единственным предприятием в Российской Федерации, осуществляющим полномасштабную разработку тепловых энергоустановок

В период от основания предприятия и до середины 1960-х гг. главное внимание уделялось разработке турбинных двигателей для противокорабельных торпед с рабочим диапазоном работы турбин на глубинах 5-20 м. Противолодочные торпеды проектировались тогда только на электроэнергетике. В связи с условиями применения противокорабельных торпед важными требованиями к энергосиловым установкам были максимально возможная мощность и визуальная незаметность. Требование по визуальной незаметности легко выполнялось за счет применения двухкомпонентного топлива: керосина и маловодного раствора перекиси водорода (МПВ) концентрации 84%. В продуктах сгорания содержался водяной пар и двуокись углерода. Выхлоп продуктов сгорания за борт осуществлялся на расстоянии 1000-1500 мм от органов управления торпедой, при этом пар конденсировался, а двуокись углерода быстро растворялась в воде так, что газообразные продукты сгорания не только не достигали поверхности воды, но и не оказывали влияния на рули и гребные винты торпеды.

Максимальная мощность турбины, достигнутая на торпеде 53-65, составила 1070 кВт и обеспечивала движение со скоростью около 70 узлов. Это была самая скоростная торпеда в мире. Для снижения температуры продуктов сгорания топлива с 2700-2900 К до приемлемого уровня в продукты сгорания впрыскивалась морская вода. На начальной стадии работ соли из морской воды осаждались в проточной части турбины и приводили к ее разрушению. Это происходило до тех пор, пока не были найдены условия безаварийной работы, минимизирующие влияние солей морской воды на работоспособность газотурбинного двигателя.

При всех энергетических преимуществах перексида водорода как окислителя, его повышенная пожаровзрывоопасность при эксплуатации диктовала поиск применения альтернативных окислителей. Одним из вариантов подобных технических решений была замена МПВ на газообразный кислород. Турбинный двигатель, разработанный на нашем предприятии, сохранился, а торпеда, получившая обозначение 53-65К, успешно эксплуатировалась и не снята с вооружения ВМФ до сих пор. Отказ от применения МПВ в торпедных тепловых энергосиловых установках привел к необходимости проведения многочисленных научно-исследовательских работ по поиску новых топлив. В связи с появлением в середине 1960-х гг. атомных подводных лодок, имеющих высокие скорости подводного движения, противолодочные торпеды с электроэнергетикой оказались малоэффективными. Поэтому наряду с поиском новых топлив исследовались новые типы двигателей и термодинамические циклы. Наибольшее внимание было уделено созданию паротурбинной установки, работающей в замкнутом цикле Ренкина. На этапах предварительной как стендовой, так и морской отработки таких агрегатов, как турбина, парогенератор, конденсатор, насосы, клапана и всей системы в целом использовалось топливо: керосин и МПВ, а в основном варианте – твердое гидрореагирующее топливо, обладающее высокими энергетическими и эксплуатационными показателями.

Паротурбинная установка была успешно отработана, но работы по торпеде были остановлены.

В 1970-1980-х гг. большое внимание уделялось разработке газотурбинных установок открытого цикла, а также комбинированного цикла с применением в системе газовыхлопа эжектора на больших глубинах работы. В качестве топлива использовались многочисленные рецептуры жидкого монотоплива типа Otto-Fuel II, в том числе с добавками металлического горючего, а также с применением жидкого окислителя на основе гидроксил аммония перхлорат (НАР).

Практический выход получило направление создания газотурбинной установки открытого цикла на топливе типа Otto-Fuel II. Был создан турбинный двигатель мощностью более 1000 кВт для ударной торпеды калибра 650 мм.

В середине 1980-х гг. по результатам проведенных исследовательских работ руководством нашего предприятия было принято решение о развитии нового направления – разработки для универсальных торпед калибра 533 мм аксиально-поршневых двигателей на топливе типа Otto-Fuel II. Поршневые двигатели по сравнению с турбинными обладают более слабой зависимостью экономичности от глубины хода торпеды.

С 1986-го по 1991 гг. был создан аксиально-поршневой двигатель (модель 1) мощностью около 600 кВт для универсальной торпеды калибра 533 мм. Он успешно прошел все виды стендовых и морских испытаний. В конце 1990-х годов в связи с уменьшением длины торпеды была создана вторая модель этого двигателя путем модернизации в части упрощения конструкции, повышении надежности, исключения дефицитных материалов и внедрения многорежимности. Эта модель двигателя принята в серийной конструкции универсальной глубоководной самонаводящейся торпеды.

В 2002 г. ОАО «НИИ мортеплотехники» было поручено создание энергосиловой установки для новой легкой противолодочной торпеды калибра 324 мм. После анализа всевозможных типов двигателей, термодинамических циклов и топлив выбор был сделан также, как и для тяжелой торпеды, в пользу аксиально-поршневого двигателя открытого цикла на топливе типа Otto-Fuel II.

Однако при проектировании двигателя был учтен опыт слабых сторон конструкции двигателя тяжелой торпеды. Новый двигатель имеет принципиально другую кинематическую схему. В нем отсутствуют элементы трения в топливоподающем тракте камеры сгорания, что исключило возможность взрыва топлива в процессе работы. Вращающиеся части хорошо сбалансированы, а приводы вспомогательных агрегатов значительно упрощены, что привело к снижению виброактивности. Внедрена электронная система плавного регулирования расхода топлива и соответственно мощности двигателя. Практически отсутствуют регуляторы и трубопроводы. При мощности двигателя 110 кВт во всем диапазоне требуемых глубин, на малых глубинах он допускает удвоение мощности при сохранении работоспособности. Широкий диапазон параметров работы двигателя позволяет использовать его в торпедах, антиторпедах, самодвижущихся минах, средствах гидроакустического противодействия, а также в автономных подводных аппаратах военного и гражданского назначения.

Все эти достижения в области создания торпедных энергосиловых установок были возможны в связи с наличием в ОАО «НИИ мортеплотехники» уникальных экспериментальных комплексов, созданных как собственными силами, так и за счет государственных средств. Комплексы располагаются на территории около 100 тыс.м2. Они обеспечены всеми необходимыми системами энергоснабжения, в том числе системами воздуха, воды, азота и топлив высокого давления. В испытательные комплексы входят системы утилизации твердых, жидких и газообразных продуктов сгорания. В комплексах имеются стенды для испытаний макетных и полномасштабных турбинных и поршневых двигателей, а также двигателей других типов. Имеются, кроме того, стенды для испытаний топлив, камер сгорания, различных насосов и приборов. Стенды оснащены электронными системами управления, измерения и регистрации параметров, визуального наблюдения испытуемых объектов, а также аварийной сигнализацией и защитой оборудования.

Истребители A6M «Зеро» были далеко не единственным сюрпризом, при-го-тов-лен-ным японцами. Ещё одним «вундерваффе» начального периода Тихо-оке-ан-ской войны стала «61-cм торпеда обр. 93», получившая впоследствии - с лёгкой руки историка Самуэля Морисона - прозвище «Длинное копьё» (Long Lance). История создания этого оружия больше всего напоминает шутку, при-пи-сы-ва-емую А. Эйн-штей-ну: «Все с детства знают, что то-то и то-то невозможно. Но всегда находится невежда, который этого не знает. Он-то и делает открытие.» Любители фан-тас-ти-ки могли бы по этому поводу вспомнить рас-сказ Р. Джоунса «Уровень шума »... А ещё это история о том, во что обходится недооценка противника и пренебрежение разведданными, помноженные на чванство «белых людей».

Торпеды, как и самолёты, строятся вокруг двигателя. Наиболее распространённым типом корабельных торпед времён Второй Мировой были парогазовые (или wet-heater в англоязычной терминологии). Принцип работы их двигателей упрощённо можно описать так: углеводородное горючее (керосин, спирт и т. д.), окислитель (по понятным причинам использовать кислород из атмосферы невозможно) и рабочее тело (вода) подаются в камеру сгорания/газогенератор; получившийся водяной пар вместе с продуктами сгорания поступают в цилиндры паровой машины (или на лопатки паровой турбины), приводящей в движение гребные винты. Главный недостаток заключался в том, что значительную часть объёма торпеды приходится отводить под оки-сли-тель - плотность даже сильно сжатого газа намного меньше, чем у жидкостей.


Компоновка тяжёлых корабельных торпед 21" (533-мм) Mark 15 (США, 1935 г.) и 61-см обр. 93 (Япония, 1935 г.): 1) Боевая часть. 2) Танк с окислителем. 3) Танк с пресной водой. 4) Топливный танк. 5) Технический отсек - камера сгорания/газогенератор, паровая турбина или двигатель, редуктор, гребной вал, системы управления и стабилизации. 6) Приводы рулей направления и глубины. 7) Гребные винты.


Использовать в качестве окислителя кислород гораздо эффективней, чем воздух, состоящий на 78% из азота, который никак не участвует в процессе сгорания топлива и является мёртвым грузом. Таким образом, переход на кислород автоматически обеспечивает значительное увеличение скорости и дальности хода, а также позволяет увеличить размер боевой части - при тех же общей массе и габаритах. Тем более, что теоретически парогазовый двигатель может работать на любом окислителе. Но только тео-ре-ти-чес-ки - дьявол, как известно, скрывается в деталях. Сам по себе кислород не горит и не взрывается, однако в ки-сло-род-ной атмо-сфере температура воспламенения - часто с последующей детонацией - многих других веществ стремительно падает, со всеми вытекающими последствиями. Возможно, вы слышали истории про масло, попавшее на редуктор кислородного баллона. Именно с подобными проблемами столкнулись инженеры в США, Великобритании, Италии - словом везде, где в начале 1920-х годов пытались экспериментировать с кислородом в качестве окислителя.

Японцы тоже экспериментировали с кислородными торпедами, но около 1924 г., после ряда взрывов и пожаров, это напра-в-ле-ние - как и везде - было признано бесперспективным и закрыто. Эта история могла закончится тогда же, если бы в 1927 г. Императорский флот Японии не направил в Великобританию, на «Whitehead Torpedo Works», делегацию из восьми специалистов во главе с капитан-лейтенант-инженером (впоследствии контр-адмиралом) Сидзуо Ояги для ознакомления с новыми британскими торпедами - с целью выбора моделей для закупки. Что произошло далее - в деталях неизвестно. По одной из версий, во время посещения линкора «Нель-сон» японцы заметили в торпедной компрессорной корабля кислородное оборудование, а может до них просто дошли какие-то слухи. Так или иначе, в 1928 г. в Японию ушёл обстоятельный доклад о том, что британцы секретно испытывают и пла-ни-руют принять на вооружение 24" (610-мм) кислородные торпеды.

Истина, как обычно, лежала где-то посредине. Британцы действительно разработали и приняли на вооружение 24,5" (622-мм) торпеды Mark I, и они действительно экспериментировали с парогазовыми двигателями на кислороде (точнее, на обо-га-щён-ном кислородом сжатом воздухе), которые они планировали применять как на 24,5", так и на 21" (533-мм) торпедах Mark VII. Однако в результате они отказались даже от обогащённого воздуха (более того, вскоре они отказались и от самих парогазовых двигателей), а 24,5" торпедами были вооружены лишь два линкора типа «Нельсон». Именно такими торпедами была про-из-ве-дена впоследствии единственная в истории результативная торпедная атака одного линейного корабля другим - знаменитый бой с «Бисмарком» 27 мая 1941 г. (предполагается, что одна из торпед линкора «Родней» попала-таки в цель).


1. Погрузка 24,5" торпеды Mark I на борт линкора «Нельсон». 2. Эти же торпеды в одном из торпедных отсеков линкора «Родней».


Но вернёмся к нашим японцам. Получив информацию о том, что проблемы с кислородом были британцами каким-то об-ра-зом решены, соответствующий японский проект получил новое дыхание, и в конце того же 1928 г. в лабораториях арсенала ВМФ в Куре закипела работа. Теперь японцы хотя бы были уверены, что проблема в принципе решаема , оставалось «всего лишь» найти это решение - и они его нашли. Японские инженеры не пытались изобретать велосипед, за основу был взят стан-дартный парогазовый двигатель Уайтхеда, который они и доводили для безопасного использования окислителя из чистого кислорода. Началась упорная борьба с теми самыми деталями, в которых «скрывается дьявол».

Конструкторы из Куре перекомпоновали двигательный отсек торпеды, чтобы избавиться от изгибов малого радиуса в маги-стра-лях подачи окислителя с тем, чтобы в этих изгибах не могли скопиться посторонние вещества. Была также отработана технология полировки внутренних поверхностей магистралей, клапанов и редукторов - с той же целью. Поскольку боль-шин-ство возгораний и взрывов приходилось на момент запуска двигателя - была добавлена система запуска на сжатом воздухе, лишь затем постепенно замещавшемся кислородом. Была разработана методика промывки, продувки и затем герметизации магистралей окислителя перед заправкой кислородного танка. И так далее...


Как это выглядело «в железе»: 1. Двигательный отсек 61-см торпеды обр. 93, слева виден баллон со сжатым воздухом для безопасного запуска двигателя, справа - паровой двигатель. За многочисленными трубками видна камера сгорания/газогенератор. 2. Отдельно камера сгорания/ газогенератор, учебный разрез. 3. Собственно двухцилиндровый паровой двигатель Уайтхеда и гребной вал.


На первый взгляд, все эти доработки выглядят достаточно мелкими и очевидными, но в реальности это заняло более четырёх лет упорной работы и экспериментов - к 1930 г. удалось освоить обогащённый до 50% кислорода сжатый воздух, и лишь в 1933 г. были созданы первые стабильно работающие прототипы на почти чистом (98%) кислороде. Затем последовали их мно-гочисленные испытания и доводка, плюс разработка торпедных аппаратов под новое оружие (предыдущие модели японских 610-мм торпед были на полметра короче и заметно легче); кроме того, возросшие скорость и дальность требовали серьёзного улучшения систем управления, прежде всего гироскопов. Наконец, 28 ноября 1935 г. новая торпеда была принята на во-о-ру-же-ние под обозначением «кусан-сики гёрай» (торпеда обр. 93 года). То, насколько радикально новые японские торпеды (а также их 533-мм «младшие сестрички» обр. 95, созданные на их базе для вооружения подводных лодок) превосходили по всем показателям имевшееся у потенциальных противников по Тихо-оке-ан-ской войне, наглядно видно из таблицы ниже:
Модель Mark I Mark VIII** Mark IX** Mark 14 Mark 15 Обр. 93 Обр. 95
Применение ЛК ПЛ, ТК КРТ, КРЛ, ЭМ ПЛ КРЛ, ЭМ КРТ, КРЛ, ЭМ ПЛ
На вооружении с 1925 г. 1927 г. 1930 г. 1931 г. 1935 г. 1935 г. 1938 г.
. Калибр 622 мм 533 мм 533 мм 533 мм 533 мм 610 мм 533 мм
Общая длина 8103 мм 6579 мм 7277 мм 6248 мм 6883 мм 9000 мм 9000 мм
Общая масса 2585 кг 1566 кг 1693 кг 1361 кг 1550 кг 2700 кг 1665 кг
Скорость макс. 35 узлов 45,5 узлов 41 узел 46 узлов 45 узлов 51 узел 51 узел
Дальность при:
30 узлах 18 300 м 13 000 м
35 узлах 13 700 м 13 700 м 8200 м 9000 м 40 000 м
40 узлах 6400 м 10 050 м 32 000 м
45 узлах 4570 м 4100 м 5500 м 12 000 м
50 узлах 20 000 м 9 000 м
Масса БЧ 337 кг 327 кг 327 кг 230 кг 224 кг 490 кг 405 кг

Первыми на новые торпеды были перевооружены оба построенных к тому моменту крейсера типа «Могами» (по иронии судь-бы примерно в то же самое время американцы проводили демонтаж торпедных аппаратов крейсеров типов «Пенсакола» и «Норт-хэмптон», а более поздние типы строились без них изначально - стратеги из Военно-морского колледжа США ещё в начале 30-х пришли к выводу, что торпеды тяжёлым крейсерам не нужны) и новейшие эсминцы типа «Сирацую». Затем ими вооружались все новые или проходящие модернизацию надводные корабли с 610-мм торпедными аппаратами, хотя для не-ко-то-рых старых эсминцев процесс перевооружения затянулся почти до конца войны (соответственно, многие корабли до этого перевооружения попросту не дожили).


Четырёхтрубные 610-мм торпедные аппараты тяжёлого крейсера «Такао» и эсминца «Сирануи». Крейсер был перевооружён на торпеды обр. 93 во время модернизации 1939 г., эсминцы типа «Кагеро» вооружались ими изначально. Позади торпедного аппарата эсминца хорошо видно ещё одно ключевое торпедное «know-how» Императорского флота - контейнеры скоростной перезарядки с запасными торпедами, позволявшие в считанные минуты перезарядить аппараты эсминца даже на ходу. Торпедный аппарат доворачивался в положение зарядки, после чего специальные приводы закатывали скользящие по роликам контейнеров 2,7-тонные торпеды в пусковые трубы.


Императорский флот Японии, традиционно придававший большое значение торпедному оружию, сразу оценил оказавшиеся в их руках новые возможности. Если раньше торпеды считались оружием исключительно ближнего (и прежде всего ночного) боя, то теперь появилась воз-мож-ность эффективно применять их и в дневных эскадренных сражениях, причём на предельных дальностях артиллерийского огня главного калибра тяжёлых крейсеров. Ещё одним важным плюсом новых торпед была их малозаметность - благодаря отсутствию азота они почти не оставляли пенного следа на по-верх-нос-ти. Не говоря уже о мощной боевой части, позволяющей одним попаданием если и не потопить, то гарантированно вывести из строя практически любой корабль. Всё это не могло не повлечь за собой серьёзных изменений в тактике применения торпедоносных сил.

Поскольку военно-морская доктрина Японии строилась вокруг «решающего сражения», в котором предполагалось разбить выдвигающиеся к Японским островам линейные силы флота США, то с появлением нового оружия первым делом была пере-смо-тре-на «де-бют-ная» часть этого генерального сражения. В новой версии первый удар должен был на-но-ситься с помощью энкёри оммицу хасся - «дальней скрытой атаки», массированного (120-200 торпед) залпа с дистанции порядка 20 000 м. Причём ставка делалась не только на массированность залпа, малозаметность и скорость самих торпед, но ещё и на то, что противник просто не будет ожидать торпедной атаки с запредельной для себя дистанции, и поэтому даже не успеет предпринять манёвры уклонения, что значительно увеличит эффективность первого ошеломляющего удара, от ко-то-рого японские стратеги оптимистично ожидали порядка 10% попаданий. Апофеозом сумрачного японского торпедного гения стало создание уникальных кораблей, разработанных специально для энкёри оммицу хасся , ни много ни мало - торпедных крейсеров. Осенью 1941 г. два устаревших лёгких крейсера типа «Кума» лишились трёх кормовых 140-мм орудий, получив взамен по 10 че-ты-рёх-труб-ных торпедных аппарата - по 20 торпед в бортовом залпе, которого ни одному из них так и не суждено было сделать.

Успех как этой, так и других новых тактических схем во многом зависел от незнания противником возросших воз-мож-но-стей японских торпед, поэтому руководство Императорского флота предприняло все возможные усилия, чтобы со-хра-нить в тайне качественный скачок в ТТХ своего нового оружия - и прежде всего, это касалось использования кислорода в качестве окислителя - справедливо полагая, что знание даже одного этого факта позволит потенциальным противникам вычислить всё остальное и, соответственно, разработать контрмеры. В технической документации, маркировке деталей, наставлениях по эксплуатации и т. д. было запрещено даже само слово «кислород» - теперь окислитель новых торпед обтекаемо именовался дай-ни куки - «воздух №2». Непременным условием учебных стрельб, которые в Императорском флоте проводилсь в гораздо бóльших масштабах, чем в других флотах, стал поиск и сбор всех до единой выпущеных практических торпед - в первую очередь, из соображений секретности. При малейшем сомнении в выполнении этого условия (например, из-за ухудшения погоды) стрельбы попросту отменялись. Словом, японцы подошли к вопросу очень серьёзно, благо у них уже был богатый опыт - к примеру, они десятилетиями ухитрялись скрывать даже калибр своих основных корабельных торпед.

Первые торпеды калибра 610-мм японцы начали разрабатывать сразу по окончании Первой Мировой (возможно, под впе-чат-ле-нием от германских 60-см «суперторпед» типа H8) и приняли на воо-ру-же-ние уже в 1920 г. Они предназначались для новых линкоров и линейных крейсеров, строившихся по программе «Флот 8-8», но вскоре, по условиям Вашингтонского морского до-го-во-ра 1922 г., строительство этих кораблей было прекращено. Однако от новой «61-см торпеды обр. 8» - самой мощной в мире на тот момент - никто не собирался отказываться, и уже в 1923 г. в состав Императорского флота Японии был принят лёгкий крейсер «Нагара», во-ору-жён-ный 610-мм торпедными аппаратами. С этого момента все последующие японские крей-се-ры вооружались 610-мм торпедами, а после того как в 1926 г. в строй вступил головной корабль типа «Муцуки» - и все по-сле-ду-ю-щие эсминцы. В 1933 г. эти торпеды начали заменять новой моделью «61-см обр. 90», но уже через два года появились кислородные обр. 93, и предыдущая модель сохранялась лишь на кораблях, не прошедших модернизацию.

Таким образом, уже к началу Тихоокеанской войны 610-мм торпедами разных типов были вооружены 18 тяжелых и 20 лёгких крей-се-ров, а также более 80-ти эсминцев Императорского флота. Однако если мы полистаем открытый бри-тан-ский спра-воч-ник «Боевые корабли Джейна» даже за 1942 г., или секретное американское «Руководство по опознаванию», вы-пу-щен-ное Раз-вед-уп-рав-ле-ни-ем флота США в том же году, то с удивлением обнаружим, что как британцы, так и американцы, даже к концу первого года войны и близко не представляли с чем они имеют дело - в обоих справочниках в качестве калибра торпед всех японских крейсеров и эсминцев указан 21" (533-мм), и это при том, что и те, и другие уже неоднократно сталкивались с ними в бою. Это может показаться невероятным, но факт остаётся фактом - в течении двадцати с лишним лет ни одна разведка мира не смогла (или попросту не сочла необходимым) достоверно выяснить хотя бы калибр основных японских торпед. Что уж говорить о гораздо более тщательно обе-ре-гае-мом секрете кислородной новинки. Причём нельзя сказать, что союзникам не поступало никакой информации на эту тему.


Cтраницы из “Jane"s Fighting Ships 1942” и “ONI 41-42. Japanese Naval Vessels. Recognition Manual“, посвящённые крейсерам типа «Могами». Увеличены фрагменты, описывающие их торпедное вооружение - даже в конце 1942 г. всё ещё считается, что они вооружены 21" торпедами. Любопытный нюанс - информации о том, что эти крейсеры были перевооружены c 15×155-мм на 10×203-мм орудий, в “Jane"s” всё ещё нет.


Весной 1940 г. один из немногочисленных местных информаторов военно-морского атташе США в Японии, капитана 2-го ранга Генри Смит-Хаттона - японский студент-медик китайского про-ис-хож-де-ния, предложивший свою помощь американцам из идейных соображений (после известий о зверствах японцев в Китае) - сообщил ему, что для членов патриотического клуба, в котором он состоял чтобы иметь возможность участвовать в экскурсиях на военные объекты, вскоре за-пла-ни-ровано посещение эсминца Императорского флота. Смит-Хаттон не мог упустить такого шанса проверить слухи о калибре японских торпед, поэтому первым делом он пригласил своего ин-фор-ма-тора на прогулку в парк, где вместо любования цветущими сакурами провёл с ним тренировку по определению диаметра «на глаз», используя в качестве примеров стволы деревьев.

Полученная в результате информация превзошла все ожидания - студент-медик не только уверенно подтвердил, что калибр япон-ских торпед гораздо ближе к 25" (635-мм), чем к 20" (508-мм), но ещё и пересказал гордые пояснения проводившего экс-курсию офицера о самых передовых в мире японских торпедах, ра-бо-та-ющих не на сжатом воздухе, а на чистом кислороде. 22 апреля 1940 г. бесценная иформация ушла в Вашингтон, в Разведуправление флота США (Office of Naval Intelligence, ONI). Но как и , американские специалисты просто не поверили, что «отсталые азиаты» смогли ре-а-ли-зо-вать то, что оказалось не под силу конструкторам «цивилизованных стран». Сообщение о японских кислородных тор-пе-дах увеличенного калибра было оценено как малодостоверное, положено под сукно и вскоре благополучно забыто.

Уже в первых морских сражениях начавшейся спустя полтора года Тихоокеанской войны новые японские торпеды полностью оправдали возлагавшиеся на них надежды, хоть и немного иначе, чем планировалось в предвоенный период. Грандиозного «генерального сражения» линейных сил обоих флотов по понятным причинам так и не произошло, а реальные торпедно-артиллерийские бои первого года войны велись между сравнительно небольшими соединениями крейсеров и эсминцев (в редких случаях усиленных парой линкоров), решавшими вполне локальные задачи по обеспечению десантных или про-ти-во--де-сан-тных операций. Соответственно, огромная дальность хода торпед обр. 93 оказалось по большому счёту невостребованной - торпедные атаки с дальней (10 и более миль) дистанции проводились крайне редко, а попадания с таких дальностей были вообще единичными. Однако высокая скорость, точность, малозаметность, мощная боевая часть и надёжные взрыватели японских кислородных торпед стали серьёзными козырями Императорского флота и на более коротких дистанциях. Не менее важными козырями стали великолепная подготовка японских торпедистов и хорошо отработанные тактические приёмы (торпедные залпы в составе подразделения/соединения, ночные торпедные атаки и т. д.).

Свои первые жертвы торпеды обр. 93 нашли в ходе операции по захвату Голландской Ост-Индии. В четырёх сражениях, происходивших с 20 февраля по 1 марта 1942 г. ими были потоплены два тяжёлых («Хьюстон», «Эксетер») и три лёгких крейсера («Де Рейтер», «Ява», «Перт»), а также два эсминца («Пит Хейн», «Кортенар») из состава флота ABDA (American-British-Dutch-Australian Сommand ), а заодно и два собственных транспорта. Но основной урожай потопленных и по-вреж-дён-ных кораблей противника японское «вундерваффе» собрало во время Гуадалканальской кампании, развернувшейся полугодом позже. В ходе нескольких сражений, происходивших с 8 августа по 30 ноября 1942 г. японскими корабельными торпедами (либо одновременно артиллерийскими и торпедными попаданиями) было отправлено на дно четыре тяжёлых («Канберра», «Куинси», «Винсенс», «Нортхэмптон») и один лёгкий крейсер («Атланта»), а также 5 эсминцев («Блю», «Бартон», «Лэффи», «Уолк», «Бенхэм»). Вдабавок были серьёзно по-вреж-де-ны и надолго выведены из строя пять тяжёлых («Чикаго», «Портлэнд», «Миннеаполис», «Нью-Орлеанс», «Пенсакола») и один лёгкий крейсер («Джуно», вскоре добит также торпедой, но уже подводной лодкой).


Тяжёлые крейсеры «Нью Орлеанс», «Портлэнд» и «Миннеаполис». Последствия знакомства с «Копьями» в боях у Гуадалканала, осень 1942 г.


Ещё более впечатляющим этот список потерь выглядит на фоне того, что эсминцам и лёгким крейсерам союзников, также широко применявшим в этих сражениях торпеды, удалось попасть ими лишь в три японских корабля: линкор «Хией» (предположительно), тя-жё-лый крейсер «Фурутака» и эсминец «Юдати». Даже попытка затопить собственный безнадёжно повреждённый авианосец «Хорнет» окончилась полным провалом – из шестнадцати 21" (533-мм) торпед Mark 15, выпущенных американскими эсминцами в условиях, близких к полигонным, лишь три поразили обречённый корабль, остальные либо прошли слишком глубоко под килем, либо на них не сработали взрыватели. Остававшийся на плаву корабль был добит всё теми же торпедами обр. 93 подошедших японских эсминцев.

Столь плачевные результаты во многом объяснялись тем, что именно в это время, в кабинетах больших начальников флота США набирал обороты процесс, получивший впоследствии название «Большой торпедный скандал». Если корабельные торпеды Mark 15 применялись в сравнительно редких сражениях надводных кораблей, то их уменьшенные (но имевшие те же двигатели, системы управления и взрыватели) версии Mark 14, стоявшие на вооружении американских подлодок, ис-поль-зо-ва-лись постоянно. Поэтому уже к лету 1942 г. была накоплена статистика, достаточно убедительно доказывавшая, что с аме-ри-кан-ски-ми торпедами что-то не так. И хотя производители торпед пытались убедить командование флота, что всему виной ошибки самих подводников, летом и осенью 1942 г. были проведены серии испытаний, выявивших очень неприятные факты.

Сначала выяснилось, что эти торпеды в большинстве случаев идут на три и более метра глубже выставленной глубины. Оказалось, что датчики давления, ответственные за поддержание нужной глубины, неправильно учитывали гид-ро-ди-на-ми-чес-кое давление, возникающее при движении торпеды. Следующей проблемой стали магнитные взрыватели, теоретически намного повышавшие эффективность торпеды – её боевая часть должна была взрываться не у защищённого от торпед борта корабля, а под его килем. Однако выяснилось, что эти взрыватели, прекрасно работавшие на широте американского Нью-пор-та, где они разрабатывались, не действуют в более близких к экватору широтах с другим углом наклона силовых линий магнитного поля к поверхности планеты. И даже, казалось бы, максимально простые и надёжные контактные взрыватели также оказались слабым местом. Разработанные для предыдущего поколения торпед, они сбоили на новых, более скоростных.

В результате, от магнитных взрывателей просто отказались вообще, а проблемы с глубиной и контактными взрывателями удалось более или менее решить лишь к концу 1943 г. В течение двух лет войны, экипажи американских эсминцев и подлодок были вынуждены рисковать – а зачастую и жертвовать – своими жизнями, имея при этом крайне мало шансов нанести своим основным оружием хоть какой-нибудь ущерб противнику.

Между тем, 20 апреля 1943 г. в сводке номер 44-43 Разведуправления флота США впервые было упомянуто о том, что, судя по материалам допросов пленных японских моряков, крейсеры и эсминцы Императорского флота вооружены торпедами калибра 24", но никаких сведений о реальных возможностях этих торпед у американцев всё ещё не было. С момента поступления первой информации от военно-морского атташе Генри Смит-Хаттона прошло почти ровно три года.

Использованная литература:
1. U.S. Bureau of Naval Personnel, “Naval Ordnance and Gunnery (NavPers 10797-A). Volume 1 – Naval Ordnance ”, 1955.
2. David C. Evans, Mark R. Peattie, “Kaigun: Strategy, Tactics, and Technology in the Imperial Japanese Navy, 1887-1941 ”, 1997.
3. Александр Дашьян, «Убийцы „Бисмарка“. Линкоры „Нельсон“ и „Родней“ », 2010.
4. US Naval Technical Mission to Japan, “Report O-01-1: Japanese Torpedoes and Tubes, Article 1 - Ship and KAITEN Torpedoes ”, 1946.
5. John Campbell, “Naval Weapons of World War Two ”, 1985.
6. Eric LaCroix, Linton Wells II, “Japanese Cruisers of the Pacific War ”, 1997.
7. Francis E. McMurtrie, “Jane"s Fighting Ships 1942 ”, 1943.
8. U.S. Navy Office of Naval Intelligence, “ONI 41-42. Japanese Naval Vessels. Recognition Manual “, 1942-43.
9. Samuel E. Morison, “The Rising Sun in the Pacific ”, 1948.
10. Samuel E. Morison, “Struggle for Guadalcanal ”, 1950.
11. Frederick J. Milford, “US Navy Torpedoes ”, “The Submarine Review”, October 1996.
12. John Prados, “Combined Fleet Decoded: The Secret History of American Intelligence and the Japanese Navy in World War II ”, 1995.

Осенью 1984 года в Баренцевом море произошли события, которые могли привести к началу мировой войны.

В район боевой подготовки советского северного флота неожиданно на полном ходу ворвался американский ракетный крейсер. Это произошло во время торпедометания звеном вертолетов Ми-14. Американцы спустили на воду скоростную моторную лодку, а в воздух подняли вертолет для прикрытия. Авиаторы североморцы поняли, что их целью является захват новейший советской торпеды .

Почти 40 минут длилась дуэль над морем. Маневрами и потоками воздуха от винтов советские летчики не давали назойливым янки приблизиться к секретному изделию, пока советский благополучно не поднял его на борт. Подоспевшие к этому времени корабли охранения вытеснили американский за пределы полигона.

Торпеды всегда считались наиболее эффективным оружием отечественного флота. Не случайно за их секретами регулярно охотятся спецслужбы НАТО. Россия продолжает оставаться мировым лидером по количеству ноу-хау в применении при создании торпед.

Современная торпеда грозное оружие современных кораблей и подводных лодок. Она позволяет быстро и точно наносить удары по противнику в море. По определению торпеда это автономный самодвижущийся и управляемый подводный снаряд, в котором запечатано около 500 кг взрывчатого вещества или ядерная боевая часть. Секреты разработки торпедного оружия являются наиболее охраняемыми, и число государств, владеющих этими технологиями даже меньше количества членов «ядерного клуба».

В период Корейской войны в 1952 году американцы планировали сбросить две атомные бомбы каждая весом 40 тонн. В это время на стороне корейских войск действовал советский истребительный авиаполк. Советский Союз также имел ядерное оружие, и локальный конфликт в любую минуту могут перерасти в настоящую ядерную катастрофу. Сведения о намерениях американцев применить атомные бомбы стали достоянием советской разведки. В ответ Иосиф Сталин приказал ускорить создание более мощного термоядерного оружия. Уже в сентябре того же года министр судостроительной промышленности Вячеслав Малышев представил на утверждение Сталину уникальный проект.

Вячеслав Малышев предложил создать для огромную ядерную торпеду Т-15. Этот 24-метровый снаряд калибра 1550 миллиметров должен был иметь вес 40 тонн, из которых только 4 тонн приходилось на боеголовку. Сталин одобрил создание торпеды , энергию для которой производили электрические аккумуляторы.

Это оружие могло бы уничтожать крупные военно-морские базы США. Из-за повышенной секретности строители и атомщики консультации с представителями флота не вели, поэтому никто не подумал как обслуживать такого монстра и стрелять, кроме того ВМС США имели всего лишь две базы доступные для советских торпед, поэтому от супергиганта Т-15 отказались.

В замена моряки предложили создать атомную торпеду обычного калибра, которая могла бы применяться на всех . Интересно, что калибр 533 миллиметра общепринятый и научно обоснован, так как калибр и длина это фактически потенциальная энергия торпеды. Скрытно наносить удары по вероятному противнику можно было только на большие дистанции, поэтому конструкторы и военные моряки отдали приоритет тепловым торпедам.

Десятого октября 1957 года в районе Новой Земли были проведены первые подводные ядерные испытания торпеды калибром 533 миллиметра. Новой торпедой стреляла подводная лодка С-144. С дистанции 10 километров подлодка выполнила одно торпедный залп. Вскоре на глубине 35 метров последовал мощный атомный взрыв, его поражающие свойства фиксировали сотни датчиков, размещенных на , находившихся в районе испытаний. Интересно, что экипажи во время этого опаснейшего элемента заменили животными.

По итогам этих испытаний, военный флот получил на вооружение первую атомную торпеду 5358 . Они относились к классу тепловых, так как их двигатели работали на парах газовой смеси.

Атомная эпопея это только одна страница из истории российского торпедостроения. Более 150 лет назад идея создать первую самодвижущую морскую мину или торпеду выдвинул наш соотечественник Иван Александровский. Вскоре под командованием впервые в мире была применена торпеда в бою с турками в январе 1878 года. А в начале Великой Отечественной войны советские конструкторы создали самую высокоскоростную торпеду в мире 5339, что значит 53 сантиметра и 1939 года. Однако подлинный рассвет отечественные школы торпедостроения произошел в 60-е годы прошлого века. Его центром стал ЦНИ 400, в последствие переименованный в «Гидроприбор». За прошедший период институт передал советскому флоту 35 различных образцов торпед .

Помимо подлодок торпедами вооружались морская авиация и все классы надводных кораблей, бурно развивающегося флота СССР: крейсеры, эсминцы и сторожевые корабли. Также продолжали строиться уникальные носители этого оружия торпедные катера.

В тоже время состав блока НАТО постоянно пополнялся кораблями с более высокими характеристиками. Так в сентябре 1960 года на воду был спущен первый в мире атомный «Энтерпрайз» водоизмещением 89000 тонн, с 104 единицами ядерных боеприпасов на борту. Для борьбы с авианосными ударными группами имеющих сильную противолодочную оборону, дальности существовавшего оружие было уже недостаточно.

Не замеченными к авианосцам могли подойти только подводные лодки, но вести прицельную стрельбу по прикрытого кораблями охранения было крайне сложно. Кроме того за годы Второй мировой войны американский флот научился противодействовать системе самонаведения торпеды. Чтобы решить эту проблему советские ученые впервые в мире создали новое торпедное устройство, которое обнаруживала кильватерную струю корабля и обеспечивала его дальнейшее поражение. Однако тепловые торпеды имели существенный недостаток их характеристики резко падали на большой глубине, при этом их поршневые двигатели и турбины издавали сильные шумы, что демаскировало атаковавшие корабли.

В виду этого конструкторам пришлось решать новые задачи. Так появились авиационная торпеда, которая размещались под корпусом крылатой ракеты. В результате время поражения субмарин сократилась в несколько раз. Первый такой комплекс получил название «Метель». Он был предназначен для стрельбы с подводными лодками со сторожевых кораблей. Позже комплекс научился поражать и надводные цели. Ракето-торпедами были вооружены и субмарины.

В 70-х годах ВМС США переквалифицировали свои авианосцы из ударных, в многоцелевые. Для этого был заменен состав базирующихся на них самолетов в пользу противолодочных. Теперь они могли не только наносить воздушные удары по территории СССР, но и активно противодействовать развёртыванию в океане советских подводных лодок. Для прорыва обороны и уничтожения многоцелевых авианосных ударных групп, советские подлодки стали вооружаться крылатыми ракетами, стартовавшими из торпедных аппаратов и летевших на сотни километров. Но даже это дальнобойное оружие не могло потопить плавучий аэродром. Требовались более мощные заряды, поэтому специально для атомоходов типа « » конструкторы «Гидроприбор» создали торпеду увеличенного калибра 650 миллиметров, которая несет более 700 килограммов взрывчатки.

Этот образец используется в так называемой мертвой зоне своих противокорабельных ракет. Он наводится на цель либо самостоятельно, либо получает информацию от внешних источников целеуказания. При этом торпеда может подойти к противнику одновременно с другими средствами поражения. Защититься от такого массированного удара практически невозможно. За это она получила прозвище «убийца авианосцев».

В повседневных делах и заботах советские люди не задумывались об опасностях связанных с противостоянием сверхдержав. А ведь на каждого из них было нацелено в эквиваленте около 100 тонн боевых средств США. Основная масса этого оружия была вынесена в мировой океан и размещена на подводных носителях. Главным оружием советского флота против были противолодочные торпеды . Традиционно для них использовались электрические двигатели, мощность которых не зависела от глубины хода. Такими торпедами вооружались не только подводные лодки, но и надводные корабли. Самыми мощными из них были . Долгое время наиболее распространенные противолодочные торпеды для субмарин были СЭТ-65, но в 1971 году конструкторы впервые применили телеуправление, которое осуществлялось под водой по проводам. Это резко увеличило точность стрельбы подлодок. А вскоре была создана универсальная электроторпеда УСЭТ-80, которая эффективно могла уничтожать не только , но и надводные . Она развивала высокую скорость более 40 узлов и имела большую дальность. Кроме того поражала на глубина хода недоступной для любых противолодочных сил НАТО - свыше 1000 метров.

В начале 90-х годов после распада Советского Союза заводы и полигоны института «Гидроприбор» оказались на территории семи новых суверенных государств. Большинство предприятий были разграблены. Но научные работы по созданию современного подводного ружья в России не прерывались.

сверхмалая боевая торпеда

Подобно беспилотным летательным аппаратом торпедным оружием в ближайшие годы будут пользоваться с возрастающим спросом. Сегодня Россия строит боевые корабли четвертого поколения, и одной из их особенности является интегрированная система управления оружием. Для них специально созданы малогабаритные тепловые и универсальные глубоководные торпеды . Их двигатель работает на унитарном топливе, которое по сути является жидким порохом. При его горении выделяется колоссальная энергия. Данная торпеда универсальна. Она может применяться с надводных кораблей, подводных лодок, а также входить в состав боевых частей авиационных противолодочных комплексов.

Технические характеристики универсальной глубоководной самонаводящейся торпеды с телеуправлением (УГСТ):

Вес - 2200 кг;

Вес заряда - 300 кг;

Скорость - 50 узлов;

Глубина хода - до 500 м;

Дальность - 50 км;

Радиус самонаведения - 2500 м;

В последнее время состав американского флота пополняют новейшие атомные субмарины класса «Вирджиния». Их боезапас включает 26 модернизированных торпед Mk 48. При стрельбе они устремляются к цели расположенной на дальности 50 километров со скоростью 60 узлов. Рабочие глубины хода торпеды в целях неуязвимости для противника составляют до 1 километра. Противником данных лодок под водой призвана стать российская многоцелевая подводная лодка проекта 885 «Ясень». Ее боезапас составляет 30 торпед, а секретные пока характеристики ни в чем не уступают.

И в заключении хотелось бы отметить, что торпедное оружие хранит в себе массу секретов, за каждый из которых вероятному противнику в бою придется заплатить дорогую цену.

В общем смысле, под торпедой мы понимаем металлический сигарообразный или бочкообразный боевой снаряд, движущийся самостоятельно. Такое название снаряд получил в честь электрического ската порядка двухсот лет назад. Особое место занимает именно морская торпеда. Она первая была придумана и первая была использована в военной промышленности. В общем смысле торпеда – это обтекаемый бочкообразный корпус, внутри которого находится двигатель, ядерный или неядерный боевой заряд и топливо. Снаружи корпуса установлено оперение и гребные винты. А команда торпеде дается через прибор управления.

Надобность в таком вооружении появилась после создания подводных лодок. В это время использовались буксируемые или шестовые мины, которые в подводной лодке не несли требуемого боевого потенциала. Поэтому перед изобретателями встал вопрос о создании боевого снаряда, плавно обтекаемого водой, способного самостоятельно передвигаться в водной среде, и который будет способен топить вражеские подводные и надводные суда.

Когда появились первые торпеды

Торпеда или как её называли в то время – самодвижущаяся мина, была придумала сразу двумя учеными, находящимся в разных частях мира, не имеющим друг к другу никакого отношения. Произошло это практически в одно и то же время.

В 1865 году, российский ученый И.Ф. Александровский, предложил свою модель самодвижущейся мины. Но воплотить в жизнь данную модель стало возможным лишь в 1874 году.

В 1868 году Уайтхед представил миру свою схему постройки торпеды. В тот же год патент на использование этой схемы приобретает Австро-Венгрия и становится первой страной, обладающей данной боевой техникой.

В 1873 году Уайтхед предложил приобрести схему российскому флоту. После испытаний торпеды Александровского, 1874 году было принято решение, приобрести боевые снаряды именно Уайтхеда, ведь модернизированная разработка нашего соотечественника значительно уступала по техническим и боевым характеристикам. Такая торпеда значительно увеличивала свое свойство плыть строго в одном направлении, не меняя курса, благодаря маятникам, а скорость торпеды увеличилась практически в 2 раза.

Таким образом, Россия стала лишь шестым по счету обладателем торпеды, после , Франции, Германии и Италии. Ограничением для покупки торпеды Уайтхед выдвинул лишь одно – хранить схему постройки снаряда втайне от государств не пожелавших купить ее.

Уже в 1877 году торпеды Уайтхеда были впервые использованы в бою.

Устройство торпедного аппарата

Как можно понять из названия, торпедный аппарат – это механизм, предназначенный для выстрела торпедами, а также для их перевозки и хранения в походном режиме. Этот механизм имеет форму трубы, идентичной размеру и калибру самой торпеды. Существует два способа стрельбы: пневматический (с использованием сжатого воздуха) и гидропневматический (с использованием воды, которая вытесняется сжатым воздухом из предназначенного для этого резервуара). Установленный на подводной лодке, торпедный аппарат представляет собой неподвижную систему, в то время как на надводных судах, аппарат возможно поворачивать.

Принцип работы пневматического торпедного аппарата такой: при команде “пуск”, первый привод открывает крышку аппарата, а второй привод открывает клапан резервуара со сжатым воздухом. Сжатый воздух выталкивает торпеду вперед, и в это же время срабатывает микровыключатель, который включает мотор самой торпеды.

Для пневматического торпедного аппарата ученые создали механизм, способный замаскировать место выстрела торпеды под водой – беспузырной механизм. Принцип его действия заключался в следующем: во время выстрела, когда торпеда прошла две трети своего пути по торпедному аппарату и приобретала необходимую скорость, открывался клапан, через который сжатый воздух уходил в прочный корпус подводной лодки, а вместо этого воздуха, за счет разности внутреннего и внешнего давления, аппарат заполнялся водой, до того момента, пока давление не уравновесится. Таким образом, воздуха в камере практически не оставалось, и выстрел проходил незамеченным.

Необходимость в гидропневматическом торпедном аппарате возникла, когда подводные лодки стали погружаться на глубину более 60 метров. Для выстрела было необходимо большое количество сжатого воздуха, а он на такой глубине был слишком тяжелый. В гидропневматическом аппарате выстрел совершается за счет водного насоса, импульс от которого и толкает торпеду.

Классификация

  1. В зависимости от типа двигателя: на сжатом воздухе, парогазовые, пороховые, электрические, реактивные;
  2. В зависимости от способности наведения: неуправляемые, прямоидущие; способные маневрировать по заданному курсу, самонаводящиеся пассивные и активные, телеуправляемые.
  3. В зависимости от назначения: противокорабельные, универсальные, противолодочные.

Одна торпеда включает в себя по одному пункту из каждого подразделения. Например, первые торпеды представляли собой неуправляемый противокорабельный боевой заряд с двигателем, работающим на сжатом воздухе. Рассмотрим несколько торпед из разных стран, разного времени, с разными механизмами действия.

В начале 90-ых годов, обзавелся первой лодкой, способной передвигаться под водой – “Дельфин”. Торпедный аппарат, установленный на этой подводной лодке, был самым простым – пневматическим. Т.е. тип двигателя, в этом случае, на сжатом воздухе, а сама торпеда, по способности наведения, была неуправляемая. Калибр торпед на этой лодке в 1907 году варьировался от 360 мм до 450 мм, с длинной 5,2 м и весом 641 кг.

В 1935-1936 годах российскими учеными был разработан торпедный аппарат с пороховым типом двигателя. Такие торпедные аппараты были установлены на эсминцах типа 7 и легких крейсерах типа “Светлана”. Боеголовки такого аппарата были 533 калибра, весом 11,6 кг, а вес порохового заряда составлял 900 г.

В 1940 году после десятилетия упорной работы был создан опытный аппарат с электрическим типом двигателя – ЭТ-80 или “Изделие 115”. Торпеда, выстрелянная из такого аппарата, развивала скорость до 29 узлов, с дальностью действия до 4 км. Кроме всего прочего, такой тип двигателя был гораздо тише его предшественников. Но после нескольких происшествий связанных с взрывом аккумуляторов, данным типом двигателя экипаж пользовался без особого желания и не пользовался спросом.

В 1977 году был представлен проект с реактивным типом двигателя – суперкавитационная торпеда ВА 111 “Шквал”. Торпеда предназначалась как для уничтожения подводных лодок, так и для надводных судов. Конструктором ракеты “Шквал”, под руководством которого проект был разработан и воплощен в жизнь, по праву считается Г.В. Логвинович. Данная ракета-торпеда развивала просто поразительную скорость, даже для настоящего времени, а внутри ее, в первое время, была установлена ядерный боевой заряд мощностью 150 кт.

Устройство торпеды шквал

Технические характеристики торпеды ВА 111 “Шквал”:

  • Калибр 533,4 мм;
  • Длина торпеды составляет 8,2 метра;
  • Скорость движения снаряда достигает 340 км/ч (190 узлов);
  • Вес торпеды – 2700 кг;
  • Дальность действия до 10 км.
  • Ракета-торпеда “Шквал” имела и ряд недостатков: она вырабатывала очень сильный шум и вибрацию, что негативно отражалось на ее способности к маскировке, глубина хода составляла лишь 30 м, поэтому торпеда в воде оставляла за собой четкий след, и ее легко было обнаружить, а на самой головке торпеды невозможно было установить механизм самонаведения.

Практически 30 лет не существовало торпеды способной противостоять в совокупности характеристикам “Шквала”. Но в 2005 году Германия предложила свою разработку – суперкавитационную торпеду под названием “Барракуда”.

Принцип ее действия был таким же, как у советского “Шквала”. А именно: кавитационный пузырь и движение в нем. Барракуда может достигать скорость до 400 км/ч и, согласно германским источникам, торпеда способна к самонаведению. К недостаткам так же можно отнести сильный шум и небольшую максимальную глубину.

Носители торпедного оружия

Как уже говорилось выше, первым носителем торпедного оружия является подводная лодка, но кроме нее, конечно, торпедные аппараты устанавливаются и на другой технике, такой как, самолеты, вертолеты и катера.

Торпедные катера представляют собой легкие маловесные катера, оснащенные торпедными установками. Впервые использовались в военном деле в 1878-1905 годах. Имели водоизмещение около 50 тонн, с вооружением в 1-2 торпеды 180 мм калибра. После этого развитие пошло в двух направлениях – увеличение водоизмещения и способности держать на борту большего количества установок, и увеличение маневренности и скорости небольшого судна с дополнительными боеприпасами в виде автоматического оружия до 40 мм калибра.

Легкие торпедные катера времен Второй мировой войны имели практически одинаковые характеристики. В пример поставим советский катер проекта Г-5. Это небольшой быстроходный катер с весом не более 17 тонн, имел на своем борту две торпеды 533 мм калибра и два пулемета 7,62 и 12,7 мм калибра. Длина его составляла 20 метров, а скорость достигала 50 узлов.

Тяжелые торпедные катера представляли собой большие военные корабли с водоизмещением до 200 тонн, которые мы привыкли называть эсминцами или минными крейсерами.

В 1940 году был представлен первый образец ракеты-торпеды. Самонаводящаяся ракетная установка имела 21 мм калибр и сбрасывалась с противолодочных самолетов на парашюте. Поражала эта ракета только надводные цели и поэтому оставалась на вооружение лишь до 1956 года.

В 1953 году в российский флот принял в свое вооружение ракету-торпеду РАТ-52. Ее создателем и конструктором считается Г.Я.Дилон. Эту ракету несли на своем борту самолеты типа Ил-28Т и Ту-14Т.

На ракете отсутствовал механизм самонаведения, но скорость поражения цели была довольно высока – 160-180 м/с. Ее скорость достигала 65 узлов, с дальностью хода 520 метров. Пользовался российский военно-морской флот данной установкой на протяжении 30-ти лет.

Вскоре после создания первого носителя самолета, ученые стали разрабатывать модель вертолета, способного вооружаться и атаковать торпедами. И в 1970 году на вооружение СССР был взят вертолет типа Ка-25ПЛС. Этот вертолет был оснащен устройством, способным спускать торпеду без парашюта под углом 55-65 градусов. Вертолет был вооружен авиационной торпедой АТ-1. Торпеда была 450 мм калибра, с дальностью управления до 5 км и глубиной ухода в воду до 200 метров. Тип двигателя представлял собой электрический одноразовый механизм. Во время выстрела электролит заливался сразу во все аккумуляторы из одной емкости. Срок хранения такой торпеды составлял не более 8 лет.

Современные виды торпед

Торпеды современного мира представляют собой серьезное вооружение подводных лодок, надводных судов и морской авиации. Это мощный и управляющийся снаряд, который содержит ядерную боевую часть и порядка полу тонны взрывчатого вещества.

Если рассматривать советские военно-морскую оружейную промышленность, то на данный момент, в плане торпедных установок, мы отстаем от мировых стандартов примерно на 20-30 лет. Со времен “Шквала”, созданного в 1970-ых годах, Россия не сделала никаких крупных сдвигов вперед.

Одной из самых современных торпед России является боеголовка, оснащенная электрическим двигателем – ТЭ-2. Ее масса порядка 2500 кг, калибр – 533 мм, масса боевого заряда – 250 кг, длина – 8,3 метра, а скорость достигает 45 узлов при дальности действия порядка 25 км. Помимо этого, ТЭ-2 оснащена системой самостоятельного наведения, а срок ее хранения составляет 10 лет.

В 2015 году российский флот получил в свое распоряжение торпеду под названием “Физик”. Данная боеголовка оснащена тепловым двигателем, работающем на однокомпонентном топливе. К одной из ее разновидностей относится торпеда под названием “Кит”. Эту установку российский флот принял на вооружение в 90-ых годах. Торпеду прозвали “убийцей авианосцев”, потому что ее боевая часть имела просто поразительную мощность. При калибре 650 мм, масса боевого заряда была порядка 765 кг тротила. А дальность действия достигала 50-70 км при 35 узлах скорости. Сам же “Физик” обладает несколько меньшими боевыми характеристиками и его снимут с производства, когда миру продемонстрируют его модифицированную версию – “Футляр”.

По некоторым данным торпеда “Футляр” должна поступить на вооружение уже в 2018 году. Все ее боевые характеристики не раскрываются, но известно, что дальность ее действия составит примерно 60 км при скорости в 65 узлов. Боеголовка будет оснащена тепловым пропульсивным двигателем – системой ТПС-53.

В это же время, самая современная американская торпеда Mark-48 развивает скорость до 54 узлов при дальности действия 50 км. Данная торпеда оснащена системой многократной атаки, если она потеряла цель. Mark-48 подвергался модификации с 1972 уже семь раз, и на сегодняшний момент, он превосходит торпеду “Физик”, но проигрывает торпеде “Футляр”.

Немного уступают по своим характеристика торпеды Германии – DM2A4ER, и Италии – Black Shark. При длине порядка 6 метров, они развивают скорость до 55 узлов при дальности действия до 65 км. Масса их составляет 1363 кг, а масса боевого заряда – 250-300 кг.

Энциклопедичный YouTube

    1 / 3

    ✪ How do fish make electricity? - Eleanor Nelsen

    ✪ Torpedo marmorata

    ✪ Ford Mondeo печка. Как будет гореть?

    Субтитры

    Переводчик: Ksenia Khorkova Редактор: Ростислав Голод В 1800 году учёный-натуралист Александр фон Гумбольдт наблюдал, как косяк электрических угрей выпрыгнул из воды, чтобы защититься от приближающихся лошадей. Многим история показалась необычной, и они подумали, что Гумбольдт всё выдумал. Но рыбы, использующие электричество, встречаются чаще, чем вы думаете; и да, существует такой вид рыб - электрические угри. Под водой, где мало света, электрические сигналы дают возможность для коммуникации, навигации и служат для поиска, а в редких случаях - и для обездвижения жертвы. Приблизительно 350 видов рыб имеют специальные анатомические образования, которые генерируют и регистрируют электрические сигналы. Эти рыбы делятся на две группы в зависимости от того, сколько электричества они вырабатывают. Учёные называют первую группу рыбами со слабыми электрическими свойствами. Органы рядом с хвостом, называемые электрическими органами, генерируют до одного вольта электричества, почти две трети от пальчиковой батарейки. Как это работает? Мозг рыбы посылает сигнал через нервную систему к электрооргану, который заполнен стопками из сотен или тысяч похожих на диски клеток, которые называются электроцитами. Обычно электроциты вытесняют ионы натрия и калия для поддержания положительного снаружи и отрицательного заряда внутри. Но когда сигнал из нервной системы доходит до электроцита, он провоцирует открытие ионных каналов. Положительно заряженные ионы возвращаются назад внутрь. Теперь один конец электроцита заряжен отрицательно снаружи и положительно внутри. Но у противоположного конца противоположные заряды. Эти переменные заряды могут создавать ток, превращая электроцит в своеобразную биологическую батарею. Ключ к этой способности состоит в том, что сигналы скоординированы таким образом, чтобы дойти до каждой клетки в одно и то же время. Поэтому стопки электроцитов действуют как тысячи последовательных батарей. Крохотные заряды каждой батареи образуют электрическое поле, которое может перемещаться на несколько метров. Клетки, называемые электрорецепторами и находящиеся в коже, позволяют рыбе постоянно ощущать это поле и изменения в нём, вызванные окружающей средой или другими рыбами. Гнатонем Петерса, или нильский слоник, например, обладает удлинённым, похожим на хобот отростком на подбородке, который усеян электрическими рецепторами. Это позволяет рыбе принимать сигналы от других рыб, оценивать расстояние, определять форму и размеры близлежащих объектов или даже определять, живы или мертвы плавающие на поверхности воды насекомые. Но слоник и другие виды слабоэлектрических рыб не вырабатывают достаточно электричества для того, чтобы атаковать жертву. Этой способностью обладают рыбы с сильными электрическими свойствами, видов которых очень немного. Самая мощная сильноэлектрическая рыба - это электрическая рыба-нож, больше известная как электрический угорь. Три электрооргана охватывают почти всё её двухметровое тело. Как и слабоэлектрические рыбы, электрический угорь использует сигналы для навигации и коммуникации, но самые сильные электрические заряды он приберегает для охоты, при помощи двухфазной атаки находит, а затем и обездвиживает жертву. Сначала он выпускает пару сильных импульсов напряжением в 600 вольт. Эти импульсы вызывают спазмы мускулов жертвы и генерируют волны, выдающие место её укрытия. Сразу же после этого высоковольтные разряды вызывают ещё более сильные сокращения мышц. Угорь также может свернуться так, что электрические поля, возникающие на каждом конце электрического органа, пересекаются. Электрический шторм в конце концов выматывает и обездвиживает жертву, и электрический угорь может живьём проглотить свой обед. Два других вида сильноэлектрических рыб - это электрический сом, который может высвободить 350 вольт при помощи электрооргана, занимающего большую часть его тела, и электрический скат с почкоподобными электроорганами по бокам головы, которые вырабатывают 220 вольт. Однако в мире электрических рыб существует одна неразгаданная тайна: почему они сами себя не оглушают током? Возможно, что размер сильноэлектрических рыб позволяет им выдержать их собственные разряды или ток выходит из их тел слишком быстро. Учёные думают, что специальные белки могут защищать электроорганы, но на самом деле это одна из загадок, которую наука пока ещё не раскрыла.

Происхождение термина

Русским языком, как и другие европейскими языками, слово «торпедо» заимствовано из английского языка (англ. torpedo ) [ ] .

По поводу первого употребления этого термина в английском языке единого мнения нет. Некоторые авторитетные источники утверждают, что первая запись этого термина относится к 1776 году и в оборот его ввёл Дэвид Бушнелл , изобретатель одного из первых прототипов подводных лодок - «Черепахи ». По другой, более распространённой версии первенство употребления этого слова в английском языке принадлежит Роберту Фултону и относится к началу XIX века (не позднее 1810 года )

И в том и в другом случае термин «torpedo» обозначал не самодвижущийся сигарообразный снаряд, а подводную контактную мину яйцеобразной или бочонкообразной формы , которые имели мало общего с торпедами Уайтхеда и Александровского.

Изначально в английском языке слово «torpedo» обозначает электрических скатов , и существует с XVI века и заимствовано из латинского языка (лат. torpedo ), которое в свою очередь первоначально обозначало «оцепенение», «окоченение», «неподвижность». Термин связывают с эффектом от «удара» электрического ската .

Классификации

По виду двигателя

  • На сжатом воздухе (до Первой мировой войны);
  • Парогазовые - жидкое топливо сгорает в сжатом воздухе (кислороде) с добавлением воды , а полученная смесь вращает турбину или приводит в действие поршневой двигатель ;
    отдельным видом парогазовых торпед являются торпеды с ПГТУ Вальтера .
  • Пороховые - газы от медленно горящего пороха вращают вал двигателя или турбину;
  • Реактивные - не имеют гребных винтов , используется реактивная тяга (торпеды: РАТ-52, «Шквал »). Необходимо отличать реактивные торпеды от ракето-торпед , представляющих собой ракеты с боевыми частями-ступенями в виде торпед (ракетоторпеды «ASROC », «Водопад » и др.).
По способу наведения
  • Неуправляемые - первые образцы;
  • Прямоидущие - с магнитным компасом или гироскопическим полукомпасом;
  • Маневрирующие по заданной программе (циркулирующие) в районе предполагаемых целей - применялись Германией во Второй мировой войне ;
  • Самонаводящиеся пассивные - по физическим полям цели, в основном по шуму или изменению свойств воды в кильватерном следе (первое применение - во Второй мировой войне), акустические торпеды «Цаукениг» (Германия, применялись подводными лодками) и Mark 24 FIDO (США , применялись только с самолётов, так как могли поразить свой корабль);
  • Самонаводящиеся активные - имеют на борту гидролокатор . Многие современные противолодочные и многоцелевые торпеды;
  • Телеуправляемые - наведение на цель осуществляется с борта надводного или подводного корабля по проводам (оптоволокну).

По назначению

  • Противокорабельные (первоначально все торпеды);
  • Универсальные (предназначены для поражения как надводных так и подводных кораблей);
  • Противолодочные (предназначенные для поражения подводных кораблей).

«В 1865 году,- пишет Александровский,- мною был представлен… адмиралу Н. К. Краббе (управляющий Морским министерством Авт.) проект изобретённого мною самодвижещегося торпедо. Сущность… торпедо ничего более, как только копия в миниатюре с изобретённой мною подводной лодки. Как и в моей подводной лодке, так и моем торпедо главным двигатель - сжатый воздух, те же горизонтальные рули для направления на желаемой глубине… с той лишь разницей, что подводная лодка управляется людьми, а самодвижущееся торпедо… автоматическим механизмом. По представлению моего проекта самодвижущегося торпедо Н. К. Краббе нашел его преждевременным, ибо в то время моя подводная лодка только строилась».

По-видимому первой управляемой торпедой является разработанная в 1877 году Торпеда Бреннана .

Первая мировая война

Вторая мировая война

Электрические торпеды

Одним из недостатков парогазовых торпед является наличие на поверхности воды следа (пузырьков отработанного газа), демаскирующего торпеду и создающего атакованному кораблю возможность для уклонения от неё и определения местонахождения атакующих, поэтому после Первой мировой войны начались попытки применения в качестве двигателя торпеды электромотора . Идея была очевидна, но ни одно из государств, кроме Германии , до начала Второй мировой войны реализовать её не смогло. Кроме тактических преимуществ оказалось, что электрические торпеды сравнительно просты в изготовлении (так, трудозатраты на изготовление стандартной немецкой парогазовой торпеды G7a (T1) составляли от 3740 человеко-часов в 1939 г. до 1707 человеко-часов в 1943 г.; а на производство одной электроторпеды G7e (Т2) требовалось 1255 человеко-часов). Однако максимальная скорость хода электроторпеды равнялась только 30 узлам , в то время как парогазовая торпеда развивала скорость хода до 46 узлов. Также существовала проблема устранения утечки водорода из батареи аккумуляторов торпеды, что иногда приводило к его скоплению и взрывам.

В Германии электрическую торпеду создали ещё в 1918 г., но в боевых действиях её применить не успели. Разработки продолжили в 1923 г., на территории Швеции. В г. новая электрическая торпеда была готова к серийному производству, но официально её приняли на вооружение только в г. под обозначением G7e . Работы были настолько засекречены, что британцы узнали о ней только в том же 1939, когда части такой торпеды обнаружили при осмотре линейного корабля «Ройял Оук », торпедированного в Скапа-Флоу на Оркнейских островах .

Однако, уже в августе 1941 на захваченной U-570 в руки британцев попали полностью исправные 12 таких торпед. Несмотря на то что и в Британии, и в США в то время уже имелись опытные образцы электрических торпед, они просто скопировали германскую и приняли её на вооружение (правда, только в 1945, после окончания войны) под обозначением Mk-XI в британском и Mk-18 в американском флоте.

Работы по созданию специальной электрической батареи и электродвигателя, предназначенных для торпед калибра 533 мм, начали в 1932 г. и в Советском Союзе . В течение 1937-1938 гг. было изготовлено две опытовые электрические торпеды ЭТ-45 с электродвигателем мощностью 45 кВт. Она показала неудовлетворительные результаты, поэтому в 1938 г. разрабатывается принципиально новый электродвигатель с вращающимися в разные стороны якорем и магнитной системой, с высоким КПД и удовлетворительной мощностью (80 кВт). Первые образцы новой электрической торпеды изготовили в 1940 г. И хотя германская электрическая торпеда G7e попала в руки и советских инженеров, но те не стали её копировать, а в 1942 г., после проведения государственных испытаний, была принята на вооружение отечественная торпеда ЭТ-80. Пять первых боевых торпед ЭТ-80 поступили на Северный флот в начале 1943 г. Всего во время войны советские подводники израсходовали 16 электрических торпед.

Таким образом, реально во Второй мировой войне электрические торпеды имели на вооружении Германия и Советский Союз. Доля электрических торпед в боекомплекте подводных лодок кригсмарине составляла до 80 %.

Неконтактные взрыватели

Независимо друг от друга, в строгой тайне и почти одновременно военно-морские флоты Германии, Англии и Соединенных Штатов разработали магнитные взрыватели для торпед. Эти взрыватели имели большое преимущество перед более простыми контактными взрывателями. Противоминные переборки , находящиеся ниже броневого пояса кораблей сводили к минимуму разрушения, вызываемые при попадании торпеды в борт . Для максимальной эффективности поражения торпеда с контактным взрывателем должна была попасть в небронированную часть корпуса, что оказывалось весьма трудным делом. Магнитные взрыватели были сконструированы таким образом, что срабатывали при изменениях магнитного поля Земли под стальным корпусом корабля и взрывали боевую часть торпеды на расстоянии 0,3-3,0 метра от его днища. Считалось, что взрыв торпеды под днищем корабля наносит ему в два или три раза большие повреждения, чем такой же по мощности взрыв у его борта.

Однако, первые германские магнитные взрыватели статического типа (TZ1), которые реагировали на абсолютную величину напряжённости вертикальной составляющей магнитного поля , просто пришлось снять с вооружения в 1940 г., после Норвежской операции . Эти взрыватели срабатывали после прохождения торпедой безопасной дистанции уже при легком волнении моря, на циркуляции или при недостаточно стабильном ходе торпеды по глубине. В результате этот взрыватель спас несколько британских тяжёлых крейсеров от неминуемой гибели.

Новые германские неконтактные взрыватели появились в боевых торпедах только в 1943 г. Это были магнитодинамические взрыватели типа Pi-Dupl, в которых чувствительным элементом являлась индукционная катушка , неподвижно закреплённая в боевом отделении торпеды. Взрыватели Pi-Dupl реагировали на скорость изменения вертикальной составляющей напряжённости магнитного поля и на смену её полярности под корпусом корабля. Однако радиус реагирования такого взрывателя в 1940 г. составлял 2,5-3 м, а в 1943 по размагниченному кораблю едва достигал 1 м.

Только во второй половине войны на вооружение германского флота приняли неконтактный взрыватель TZ2, который имел узкую полосу срабатывания, лежащую за пределами частотных диапазонов основных видов помех. В результате даже по размагниченному кораблю он обеспечивал радиус реагирования до 2-3 м при углах встречи с целью от 30 до 150°, а при достаточной глубине хода (порядка 7 м) взрыватель TZ2 практически не имел ложных срабатываний из-за волнения моря. Недостатком ТZ2 являлось заложенное в него требование обеспечить достаточно высокую относительную скорость торпеды и цели, что было не всегда возможно при стрельбе тихоходными электрическими самонаводящимися торпедами.

В Советском Союзе это был взрыватель типа НВС (неконтактный взрыватель со стабилизатором ; это магнитодинамический взрыватель генераторного типа, который срабатывал не от величины, а от скорости изменения вертикальной составляющей напряжённости магнитного поля корабля водоизмещением не менее 3000 т на расстоянии до 2 м от днища). Он устанавливался на торпеды 53-38 (НВС мог применяться только в торпедах со специальными латунными боевыми зарядными отделениями).

Приборы маневрирования

В ходе Второй мировой войны во всех ведущих военно-морских державах продолжались работы по созданию приборов маневрирования для торпед. Однако только Германия смогла довести опытные образцы до промышленного производства (курсовые системы наведения FaT и её усовершенствованный вариант LuT ).

FaT

Первый образец системы наведения FaT был установлен на торпеде TI (G7a). Была реализована следующая концепция управления - торпеда на первом участке траектории двигалась прямолинейно на расстояние от 500 до 12500 м и поворачивала в любую сторону на угол до 135 градусов поперек движения конвоя, а в зоне поражения судов противника дальнейшее движение осуществляла по S-образной траектории («змейкой») со скоростью 5-7 узлов, при этом длина прямого участка составляла от 800 до 1600 м и диаметр циркуляции 300 м. В результате траектория поиска напоминала ступени лестницы. В идеале торпеда должна была вести поиск цели с постоянной скоростью поперек направления движения конвоя. Вероятность попадания такой торпеды, выпущенной с носовых курсовых углов конвоя со «змейкой» поперек курса его движения, оказывалась весьма высокой.

С мая 1943 году следующую модификацию системы наведения FaTII (длина участка «змейки» 800 м) стали устанавливать на торпедах TII (G7e). Из-за малой дальности хода электроторпеды эта модификация рассматривалась в первую очередь как оружие самообороны, выстреливавшееся из кормового торпедного аппарата навстречу преследующему эскортному кораблю.

LuT

Система наведения LuT была разработана для преодоления ограничений системы FaT и принята на вооружение весной 1944 года. По сравнению с предыдущей системой торпеды были оборудованы вторым гироскопом, в результате чего появилась возможность двукратной установки поворотов до начала движения «змейкой». Теоретически это давало возможность командиру подлодки атаковать конвой не с носовых курсовых углов, а с любой позиции - сначала торпеда обгоняла конвой, затем поворачивала на его носовые углы и только после этого начинала движение «змейкой» поперек курса движения конвоя. Длина участка «змейки» могла изменяться в любых диапазонах до 1600 м, при этом скорость торпеды была обратно пропорциональна длине участка и составляла для G7a с установкой на начальный 30-узловой режим 10 узлов при длине участка 500 м и 5 узлов при длине участка 1500 м.

Необходимость внесения изменений в конструкцию торпедных аппаратов и счётно-решающего прибора ограничили количество лодок, подготовленных к использованию системы наведения LuT, всего пятью десятками. По оценкам историков, в ходе войны немецкие подводники выпустили около 70 торпед с LuT.