Мoдa

Окислительно-восстановительные реакции. Окисление, восстановление

Многие вещества обладают особыми свойствами, которые в химии принято называть окислительными или восстановительными.

Одни химические вещества проявляют свойства окислителей, другие - восстановителей, при этом некоторые соединения могут проявлять те и другие свойства одновременно (например – перекись водорода Н 2 О 2).

Что же такое окислитель и восстановитель, окисление и восстановление?

Окислительно-восстановительные свойства вещества связаны с процессом отдачи и приема электронов атомами, ионами или молекулами.

Окислитель - это вещество, которое в ходе реакции принимает электроны, т. е. восстанавливается; восстановитель - отдает электроны, т. е. окисляется. Процессы передачи электронов от одних веществ к другим, обычно называют окислительно-восстановительными реакциями.

Соединения, содержащие атомы элементов с максимальной степенью окисления, могут быть только окислителями за счет этих атомов, т.к. они уже отдали все свои валентные электроны и способны только принимать электроны. Максимальная степень окисления атома элемента равна номеру группы в периодической таблице, к которой относится данный элемент. Соединения, содержащие атомы элементов с минимальной степенью окисления могут служить только восстановителями, поскольку они способны лишь отдавать электроны, потому, что внешний энергетический уровень у таких атомов завершен восемью электронами

Химические реакции, протекающие с изменением степени окисления элементов, входящих в состав реагирующих веществ, называются окислительно-восстановительными.

Окисление - это процесс отдачи электронов атомом, молекулой или ионом. Если атом отдает свои электроны, то он приобретает положительный заряд, например:

Если отрицательно заряженный ион (заряд -1), например , отдает 1 электрон, то он становится нейтральным атомом:

Если положительно заряженный ион или атом отдает электроны, то величина его положительного заряда увеличивается соответственно числу отданных электронов:

Восстановление - это процесс присоединения электронов атомом, молекулой или ионом.

Если атом присоединяет электроны, то он превращается в отрицательно заряженный ион:

Если положительно заряженный ион принимает электроны, то величина его заряда уменьшается, например:

или он может перейти в нейтральный атом:

Окислителем является атом, молекула или ион, принимающий электроны. Восстановителем является атом, молекула или ион, отдающий электроны.

Окислитель в процессе реакции восстанавливается, а восстановитель - окисляется.

Следует помнить, что рассмотрение окисления (восстановления) как процесса отдачи (и принятия) электронов атомами или ионами не всегда отражает истинное положение, так как во многих случаях происходит не полный перенос электронов, а только смещение электронного облака от одного атома к другому.

Однако для составления уравнений окислительно-восстановительных реакций не имеет существенного значения, какая связь при этом образуется - ионная или ковалентная. Поэтому для простоты будем говорить о присоединении или отдаче электронов независимо от типа связи.

Составление уравнений окислительно-восстановительных реакций и подбор коэффициентов. При составлении уравнения окислительно-восстановительной реакции необходимо определить восстановитель, окислитель и число отдаваемых и принимаемых электронов.

Как правило, коэффициенты подбирают, используя либо метод электронного баланса, либо метод электронно-ионного баланса (иногда последний называют методом полуреакций).

В качестве примера составления уравнений окислительно-восстановительных реакций рассмотрим процесс окисления пирита концентрированной азотной кислотой:

Прежде всего, определим продукты реакции. является сильным окислителем, поэтому сера будет окисляться до максимальной степени окисления а железо - до , при этом может восстанавливаться до или . Мы выберем .

Где будет находиться (в левой или правой части), мы пока не знаем.

1. Применим сначала метод электронно-ионного баланса. В этом методе рассматривают переход электронов от одних атомов или ионов к другим с учетом характера среды (кислая, щелочная или нейтральная), в которой протекает реакция. - При составлении уравнений процессов окисления и восстановления для уравнивания числа атомов водорода и кислорода вводят (в зависимости от среды) или молекулы воды и ионы водорода (если среда кислая), или молекулы воды и гидроксид-ионы (если среда щелочная). Соответственно и в получаемых продуктах в правой части электронно-ионного уравнения будут находиться ионы водорода и молекулы воды (кислая среда) или гидроксид-ионы и молекулы воды (щелочная среда).

Таким образом, при написании электронно-ионных уравнений нужно исходить из состава ионов, действительно имеющихся в растворе. Кроме того, как и при составлении сокращенных ионных уравнений, вещества малодиссоциирующие, плохо растворимые или выделяющиеся в виде газа следует писать в молекулярной форме.

Рассмотрим для нашего случая полуреакцию окисления.

Молекула превращается в ион полностью диссоциирует на ионы, гидролизом пренебрегаем) и два иона (диссоциация ):

Для того чтобы уравнять кислород, в левую часть добавим 8 молекул а в правую - 16 ионов (среда кислая!):

Заряд левой части равен 0, заряд правой поэтому должен отдать 15 электронов:

Рассмотрим теперь полуреакцию восстановления нитрат-иона:

Необходимо отнять у атома О. Для этого к левой части добавим 4 иона (кислая среда), а к правой - 2 молекулы

Для уравнивания заряда к левой части (заряд ) добавим 3 электрона:

Окончательно имеем:

Сократив обе части на получим сокращенное ионное уравнение окислительно-восстановительной реакции:

Добавив в обе части уравнения соответствующее количество ионов находим молекулярное уравнение реакции:

Обратите внимание, что для определения количества отданных и принятых электронов нам ни разу не пришлось определять степень окисления элементов. Кроме того, мы учли влияние среды и автоматически определили, что находится в правой части уравнения. Несомненно то, что этот метод гораздо больше соответствует химическому смыслу, чем стандартный метод электронного баланса, хотя последний несколько проще для понимания.

2. Уравняем данную реакцию методом электронного баланса. Процесс восстановления описывается просто:

Сложнее составить схему окисления, поскольку окисляются сразу 2 элемента - Fe и S. Можно приписать железу степень окисления сере и учесть, что на 1 атом Fe приходится два атома S:

Можно, однако, обойтись без определения степеней окисления и записать схему, напоминающую схему (7.1):

Правая часть имеет заряд +15, левая - 0, поэтому должен отдать 15 электронов. Записываем общий баланс:

5 молекул идут на окисление , и еще 3 молекулы необходимы для образования

Чтобы уравнять водород и кислород, добавляем в правую часть 2 молекулы :

Метод электронно-ионного баланса более универсален по сравнению с методом электронного баланса и имеет неоспоримое преимущество при подборе коэффициентов во многих окислительно-восстановительных реакциях, в частности, с участием органических соединений, в которых даже процедура определения степеней окисления является очень сложной.

Рассмотрим, например, процесс окисления этилена, происходящий при пропускании его через водный раствор перманганата калия. В результате этилен окисляется до этиленгликоля , а перманганат восстанавливается до оксида марганца (IV), кроме того, как будет очевидно из итогового уравнения баланса, справа образуется также гидроксид калия:

После проведения необходимых сокращений подобных членов, записываем уравнение в окончательном молекулярном виде

Количественная характеристика окислительно-восстановительных реакций. Ряд стандартных электродных потенциалов. Возможность протекания любой окислительно-восстановительной реакции в реальных условиях обусловлена рядом причин: температурой, природой окислителя и восстановителя, кислотностью среды, концентрацией веществ, участвующих в реакции, и т.д.

Учесть все эти факторы бывает трудно, но, помня о том, что любая окислительно-восстановительная реакция протекает с переносом электронов от восстановителя к окислителю, можно установить критерий возможности протекания такой реакции.

Количественной характеристикой окислительно-восста-новительных процессов являются нормальные окислительно-восстановительные потенциалы окислителей и восстановителей (или стандартные потенциалы электродов).

Чтобы понять физико-химический смысл таких потенциалов, необходимо проанализировать так называемые электрохимические процессы.

Химические процессы, сопровождающиеся возникновением электрического тока или вызываемые им, называются электрохимическими.

Чтобы понять природу электрохимических процессов, обратимся к рассмотрению нескольких достаточно простых ситуаций. Представим себе металлическую пластинку, погруженную в воду. Под действием полярных молекул воды ионы металла отрываются от поверхности пластинки и гидратированными переходят в жидкую фазу. Последняя при этом заряжается положительно, а на металлической пластинке появляется избыток электронов. Чем дальше протекает процесс, тем больше становится заряд как пластинки, так и жидкой фазы.

Благодаря электростатическому притяжению катионов раствора и избыточных электронов металла на границе раздела фаз возникает так называемый двойной электрический слой, который тормозит дальнейший переход ионов металла в жидкую фазу. Наконец наступает момент, когда между раствором и металлической пластинкой устанавливается равновесие, которое можно выразить уравнением:

или с учетом гидратации ионов в растворе:

Состояние этого равновесия зависит от природы металла, концентрации его ионов в растворе, от температуры и давления.

При погружении металла не в воду, а в раствор соли этого металла равновесие в соответствии с принципом Ле Шателье смещается влево и тем больше, чем выше концентрация ионов металла в растворе. Активные металлы, ионы которых обладают хорошей способностью переходить в раствор, будут в этом случае заряжаться отрицательно, хотя в меньшей степени, чем в чистой воде.

Равновесие (7.2) можно сместить вправо, если тем или иным способом удалять электроны из металла. Это приведет к растворению металлической пластинки. Наоборот, если к металлической пластинке подводить электроны извне, то на ней будет происходить осаждение ионов из раствора.

Как уже отмечалось, при погружении металла в раствор на границе раздела фаз образуется двойной электрический слой. Разность потенциалов, возникающую между металлом и окружающей его жидкой фазой, называют электродным потенциалом. Этот потенциал является характеристикой.окислительно-восстановительной способности металла в виде твердой фазы.

Заметим, что у изолированного металлического атома (состояние одноатомного пара, возникающее при высоких температурах и высоких степенях разрежения) окислительно-восстановительные свойства характеризуются другой величиной, называемой ионизационным потенциалом. Ионизационный потенциал - это энергия, необходимая для отрыва электрона от изолированного атома.

Абсолютное значение электродного потенциала нельзя измерить непосредственно. Вместе с тем, не представляет труда измерение разности электродных потенциалов, которая возникает в системе, состоящей из двух пар металл-раствор. Такие пары называют полу элементами. Условились определять электродные потенциалы металлов по отношению к так называемому стандартному водородному электроду, потенциал которого произвольно принят за ноль. Стандартный водородный электрод состоит из специально приготовленной платиновой пластинки, погруженной в раствор кислоты с концентрацией ионов водорода и омываемой струей газообразного во дорода под давлением Па, при температуре

Возникновение потенциала на стандартном водородном электроде можио представить себе следующим образом. Газообразный водород, адсорбируясь платиной, переходит в атомарное состояние:

Между атомарным водородом, образующимся на поверхности пластины, ионами водорода в растворе и платиной (электроны!) реализуется состояние динамического равновесия:

Суммарный процесс выражается уравнением:

Платина не принимает участия в окислительно-восстановительном процессе, а является лишь носителем атомарного водорода.

Если пластинку металла, погруженную в раствор его соли с концентрацией ионов металла, равной 1 моль/л, соединить со стандартным водородным электродом, то получится гальванический элемент. Электродвижущая сила этого элемента (ЭДС), измеренная при и характеризует стандартный электродный потенциал металла, обозначаемый обычно как .

В таблице 7.1 представлены значения стандартных электродных потенциалов некоторых металлов. Стандартные потенциалы электродов, выступающих как восстановители по отношению к водороду, имеют знак «-», а знаком «+» отмечены стандартные потенциалы электродов, являющихся окислителями.

Металлы, расположенные в порядке возрастания их стандартных электродных потенциалов, образуют так называемый электрохимический ряд напряжений металлов:

Ряд напряжений характеризует химические свойства металлов:

1. Чем более отрицателен электродный потенциал металла, тем больше его восстановительная способность.

2. Каждый металл способен вытеснять (восстанавливать) из растворов солей те металлы, которые стоят в электрохимическом ряду напряжений металлов после него.

3. Все металлы, имеющие отрицательный стандартный электродный потенциал, т.е. находящиеся в электрохимическом ряду напряжений металлов левее водорода, способны вытеснять его из растворов кислот.

Необходимо отметить, что представленный ряд характеризует поведение металлов и их солей только в водных растворах и при комнатной температуре. Кроме того, нужно иметь в виду, что указанные в таблице стандартные электродные потенциалы учитывают особенности взаимодействия того или иного иона с молекулами растворителя. Это может нарушать некоторые ожидаемые закономерности в расположении металлов в электрохимическом ряду напряжений металлов. Например, электрохимический ряд напряжений металлов начинается литием, тогда как более активные в химическом отношении рубидий и калий находятся правее лития. Это связано с исключительно высокой энергией процесса гидратации ионов лития по сравнению с ионами других щелочных металлов.

Одновременно в таблице 7.1 приведены стандартные окислительно-восстановительные потенциалы которые измерены для неметаллических систем типа (7.3), находящихся в равновесном состоянии по отношению к нормальному водородному электроду.

В таблице приведены полуреакции восстановления следующего общего вида:

Как и в случае определения значения металлов, значения неметаллов измеряются при температуре 25 °С и при концентрации всех атомных и молекулярных частиц, участвующих в равновесии, равной 1 моль/л.

Таблица 7.1. Стандартные окислительно-восстановительные потенциалы при 25 °С (298 К)

(см. скан)

Алгебраическое значение стандартного окислительно-восстановительного потенциала характеризует окислительную активность соответствующей окисленной формы. Поэтому сопоставление значений стандартных окислительно-восстановительных потенциалов позволяет ответить на вопрос: протекает ли та или иная окислительно-восстановительная реакция?

Так, все полуреакции окисления галогенид-ионов до свободных галогенов

могут быть реализованы в стандартных условиях при использовании в качестве окислителя оксида свинца (IV) или перманганата калия . При использовании дихромата калия удается осуществить только реакции (7.5) и (7.6). Наконец, использование в качестве окислителя азотной кислоты позволяет осуществить только полуреакцию с участием иодид-ионов (7.6).

Таким образом, количественным критерием оценки возможности протекания той или иной окислительновосстановительной реакции является положительное значение разности стандартных окислительно-восстановительных потенциалов полуреакций окисления и восстановления.

ОСНОВЫ ТЕОРЕТИЧЕСКОЙ ХИМИИ

10. Окислительно-восстановительные реакции

Окислительно-восстановительные реакции в растворах.

Химические реакции, протекающие с изменением степени окисления элементов, входящих в состав реагирующих веществ, называются окислительно-восстановительными.

Окисление

- это процесс отдачи электронов атомом, молекулой или ионом. Если атом отдает свои электроны, то он приобретает положительный заряд: l- , отдает 1 электрон, то он становится нейтральным атомом:

Если положительно заряженный ион или атом отдает электроны, то величина его положительного заряда увеличивается соответственно числу отданных электронов:

Восстановление - это процесс присоединения электронов атомом, молекулой или ионом.

Если атом присоединяет электроны,то он превращается в отрицательно заряженный ион:

Если положительно заряженный ион принимает электроны, то величина его заряда уменьшается:

или он может перейти в нейтральный атом:

Окислителем

принимающий электроны. Восстановителем является атом, молекула или ион, отдающий электроны.

Окислитель

в процессе реакции восстанавливается, восстановитель - окисляется.

Следует помнить, что рассмотрение окисления (восстановления) как процесса отдачи (и принятия) электронов атомами или ионами не всегда отражает истинное положение, так как во многих случаях происходит не полный перенос электронов, а только смещение электронного облака от одного атома к другому.

Однако для составления уравнений окислительно-восстановительных реакций не имеет существенного значения, какая связь при этом образуется - ионная или ковалентная. Поэтому для простоты будем говорить о присоединении или отдаче электронов независимо от типа связи.

Определение стехиометрических коэффициентов в уравнениях окислительно-восстановительных реакций. При составлении уравнения окислительно-восстановительной реакции необходимо определить восстановитель, окислитель и число отдаваемых и принимаемых электронов. Как правило, коэффициенты подбирают, используя либо метод электронного баланса

, либо метод электронно-ионного баланса (иногда последний называют методом полуреакций ).

В качестве примера составления уравнений окислительно-восстановительных реакций рассмотрим процесс окисления пирита концентрированной азотной кислотой.

Прежде всего определим продукты реакции.

HNO 3 является сильным окислителем, поэтому сера будет окисляться до максимальной степени окисления S 6+ , а железо - до Fe 3+ , при этом HNO 3 может восстанавливаться до N0или NO 2 . Мы выберем N O:

Где будет находиться

H 2 O (в левой или правой части), мы пока не знаем.

1. Применим сначала метод электронно-ионного баланса

(полуреакций ). В этом методе рассматривают переход электронов от одних атомов или ионов к другим с учетом характера среды (кислая, щелочная или нейтральная), в которой протекает реакция.

При составлении уравнений процессов окисления и восстановления для уравнивания числа атомов водорода и кислорода вводят (в зависимости от среды) или молекулы воды и ионы водорода (если среда кислая), или молекулы воды и гидроксид-ионы (если среда щелочная). Соответственно и в получаемых продуктах в правой части электронно-ионного уравнения будут находиться ионы водорода и молекулы воды (кислая среда) или гидроксид-ионы и молекулы воды (щелочная среда).

Т. е. при написании электронно-ионных уравнений нужно исходить из состава ионов, действительно имеющихся в растворе. Кроме того, как и при составлении сокращенных ионных уравнений, вещества малодиссоциирующие, плохо растворимые или выделяющиеся в виде газа следует писать в молекулярной форме.

Рассмотрим для нашего случая полуреакцию окисления. Молекула

FeS 2 превращается в ион Fe 3+ (F е(N О 3) 3 полностью диссоциирует на ионы, гидролизом пренебрегаем) и два иона SO 4 2- (диссоциация H 2 SO 4):

Для того чтобы уравнять кислород, в левую часть добавим 8 молекул Н

2 О, а в правую - 16 ионов Н + (среда кислая):

Заряд левой части равен 0, заряд правой +15, поэтому

FeS 2 должен отдать 15 электронов:

Рассмотрим теперь полуреакцию восстановления нитрат-иона:

Необходимо отнять у

N О 3 2 атома О. Для этого к левой части добавим 4 иона Н 1+ (кислая среда), а к правой - 2 молекулы Н 2 О:

Для уравнивания заряда к левой части (заряд

+3) добавим 3 электрона:

Окончательно имеем:

Сократив обе части на 16Н

+ и 8Н 2 О, получим сокращенное ионное уравнение окислительно-восстановительной реакции:

Добавив в обе части уравнения соответствующее количество ионов

NO 3- и Н + находим молекулярное уравнение реакции:

Обратите внимание, что для определения количества отданных и принятых электронов вам ни разу не пришлось определять степень окисления элементов. Кроме того, мы учли влияние среды и автоматически определили, что Н

2 О находится в правой части уравнения. Несомненно то, что этот метод гораздо больше соответствует химическому смыслу, чем стандартный метод электронного баланса, хотя последний несколько проще для понимания.

2. Уравняем данную реакцию методом электронного баланса . Процесс восстановления описывается:

Сложнее составить схему окисления, поскольку окисляются сразу два элемента -

Fe и S. Можно приписать железу степень окисления 2+, сере 1- и учесть, что на один атом Fe приходится два атома S:

Можно, однако, обойтись без определения степеней окисления и записать схему, напоминающую схему

Правая часть имеет заряд +15, левая - 0, поэтому

FeS 2 должен отдать 15 электронов. Записываем общий баланс:

пять молекул НNО

3 идут на окисление FeS 2 , и еще три молекулы HNO 3 необходимы для образования Fe(N О 3) 3:

Чтобы уравнять водород и кислород, добавляем в правую часть две молекулы Н

2 О:

Метод электронно-ионного баланса более универсален по сравнению с методом электронного баланса и имеет неоспоримое преимущество при подборе коэффициентов

во многих окислительно-восстановительных реакциях, в частности, с участием органических соединений, в которых даже процедура определения степеней окисления является очень сложной.

Рассмотрим, например, процесс окисления этилена, происходящий при пропускании его через водный раствор перманганата калия. В результате этилен окисляется до этиленгликоля НО-

CH 2 - СН 2 -ОН, а перманганат восстанавливается до оксида марганца (IV), кроме того, как будет очевидно из итогового уравнения баланса, справа образуется также гидроксид калия:

После проведения необходимых сокращений подобных членов записываем уравнение в окончательном молекулярном виде

Стандартные потенциалы окислительно-восстановительных реакций.

Возможность протекания любой окислительно-восстановительной реакции в реальных условиях обусловлена рядом причин: температурой, природой окислителя и восстановителя, кислотностью среды, концентрацией веществ, участвующих в реакции, и т. д. Учесть все эти факторы бывает трудно, но, помня о том, что любая окислительно-восстановительная реакция протекает с переносом электронов от восстановителя к окислителю, можно установить критерий возможности протекания такой реакции.

Количественной характеристикой окислительно-восстановительных процессов являются нормальные окислительно-восстановительные потенциалы окислителей и восстановителей (или стандартные потенциалы электродов).

Чтобы понять физико-химический смысл таких потенциалов, необходимо проанализировать так называемые электрохимические процессы.

Химические процессы, сопровождающиеся возникновением электрического тока или вызываемые им, называются электрохимическими.

Чтобы понять природу электрохимических процессов, обратимся к рассмотрению нескольких достаточно простых ситуаций. Представим себе металлическую пластинку, погруженную в воду. Под действием полярных молекул воды ионы металла отрываются от поверхности пластинки и гидратированными переходят в жидкую фазу. Последняя при этом заряжается положительно, а на металлической пластинке появляется избыток электронов. Чем дальше протекает процесс, тем больше становится заряд

, как пластинки, так и жидкой фазы.

Благодаря электростатическому притяжению катионов раствора и избыточных электронов металла на границе раздела фаз возникает так называемый двойной электрический слой, который тормозит дальнейший переход ионов металла в жидкую фазу. Наконец, наступает момент, когда между раствором и металлической пластинкой устанавливается равновесие, которое можно выразить уравнением:

или с учетом гидратации ионов в растворе:

Состояние этого равновесия зависит от природы металла, концентрации его ионов в растворе, от температуры и

давления.

При погружении металла не в воду, а в раствор соли этого металла равновесие в соответствии с принципом Ле Шателье смещается влево и тем больше, чем выше концентрация ионов металла в растворе. Активные металлы, ионы которых обладают хорошей способностью переходить в раствор, будут в этом случае заряжаться отрицательно, хотя в меньшей степени, чем в чистой воде.

Равновесие можно сместить вправо, если тем или иным способом удалять электроны из металла. Это приведет к растворению металлической пластинки. Наоборот, если к металлической пластинке подводить электроны извне, то на ней будет происходить осаждение ионов

из раствора.

При погружении металла в раствор на границе раздела фаз образуется двойной электрический слой. Разность потенциалов, возникающую между металлом и окружающей его жидкой фазой, называют электродным потенциалом. Этот потенциал является характеристикой окислительно-восстановительной способности металла в виде твердой фазы.

У изолированного металлического атома (состояние одноатомного пара, возникающее при высоких температурах и высоких степенях разрежения) окислительно-восстановительные свойства характеризуются другой величиной, называемой ионизационным потенциалом. Ионизационный потенциал - это энергия, необходимая для отрыва электрона от изолированного атома.

Абсолютное значение электродного потенциала нельзя измерить непосредственно. Вместе с тем не представляет труда измерение разности электродных потенциалов, которая возникает в системе, состоящей из двух пар металл - раствор. Такие пары называют полуэлементами . Условились определять электродные потенциалы металлов по отношению к так называемому стандартному водородному электроду, потенциал которого произвольно принят за ноль. Стандартный водородный электрод состоит из специально приготовленной платиновой пластинки, погруженной в раствор кислоты с концентрацией ионов водорода 1 моль/л и омываемой струёй газообразного водорода под давлением 10

5 Па, при температуре 25 °С .

Ряд стандартных электродных потенциалов.

Если пластинку металла, погруженную в раствор его соли с концентрацией ионов металла, равной 1 моль/л, соединить со стандартным водородным электродом, то получится гальванический элемент. Электродвижущая сила этого элемента (ЭДС), измеренная при 25 °С, и характеризует стандартный электродный потенциал металла, обозначаемый обычно как Е°.

Стандартные потенциалы электродов, выступающих как восстановители по отношению к водороду, имеют знак “-”, а знак “+” имеют стандартные потенциалы электродов, являющихся окислителями.

Металлы, расположенные в порядке возрастания их стандартных электродных потенциалов, образуют так называемый электрохимический ряд напряжений металлов : Li, Rb, К, Ва, Sr, Ca, Na, Mg, Al, Mn, Zn, Cr, Fe, Cd, Co, Ni, Sn, Pb, H, Sb, Bi, Cu, Hg, Ag, Pd, Pt, Au.

Ряд напряжений характеризует химические свойства металлов:

1. Чем более отрицателен электродный потенциал металла, тем больше его восстановительная способность.

2. Каждый металл способен вытеснять (восстанавливать) из растворов солей те металлы, которые стоят в электрохимическом ряду напряжений металлов после него.

3. Все металлы, имеющие отрицательный стандартный электродный потенциал, т. е. находящиеся в электрохимическом ряду напряжений металлов левее водорода, способны вытеснять его из растворов кислот.

Как и в случае определения значения Е° металлов, значения Е° неметаллов измеряются при температуре 25 °С и при концентрации всех атомных и молекулярных частиц, участвующих в равновесии, равной 1 моль/л.

Алгебраическое значение стандартного окислительно-восстановительного потенциала характеризует окислительную активность соответствующей окисленной формы. Поэтому сопоставление значений стандартных окислительно-восстановительных потенциалов позволяет ответить на вопрос: протекает ли та или иная окислительно-восстановительная реакция?

Количественным критерием оценки возможности протекания той или иной окислительно-восстановительной реакции является положительное значение разности стандартных окислительно-восстановительных потенциалов полуреакций окисления и восстановления.

Электролиз растворов.

Совокупность окислительно-восстановительных реакций, которые протекают на электродах в растворах или расплавах электролитов при пропускании через них электрического тока, называют электролизом.

На катоде источника тока происходит процесс передачи электронов катионам из раствора или расплава, поэтому катод является “восстановителем”. На аноде происходит отдача электронов анионами, поэтому анод является “окислителем”.

При электролизе как на аноде, так и на катоде могут происходить конкурирующие процессы.

При проведении электролиза с использованием инертного (нерасходуемого) анода (например, графита или платины), как правило, конкурирующими являются два окислительных и два восстановительных процесса:

на аноде - окисление анионов и гидроксид-ионов,

на катоде - восстановление катионов и ионов водорода.

При проведении электролиза с использованием активного (расходуемого) анода процесс усложняется и конкурирующими реакциями на электродах являются:

на аноде - окисление анионов и гидроксид-ионов, анодное растворение металла - материала анода;

на катоде - восстановление катиона соли и ионов водорода, восстановление катионов металла, полученных при растворении анода.

При выборе наиболее вероятного процесса на аноде и катоде следует исходить из положения, что будет протекать та реакция, для которой требуется наименьшая затрата энергии. Кроме того, для выбора наиболее вероятного процесса на аноде и катоде при электролизе растворов солей с инертным электродом используют следующие правила:

На аноде могут образовываться следующие продукты: а) при электролизе растворов, содержащих в своем составе анионы F- , SO 4 2- , N О 3- , РО 4 3- , а также растворов щелочей выделяется кислород; б) при окислении анионов С l- , В r- , I- выделяются соответственно хлор, бром, иод; в) при окислении анионов органических кислот происходит процесс:

2. При электролизе растворов солей, содержащих ионы, расположенные в ряду напряжений левее Аl

3+ , на катоде выделяется водород; если ион расположен в ряду напряжений правее водорода, то на катоде выделяется металл.

3. При электролизе растворов солей, содержащих ионы, расположенные в ряду напряжений между

Al + и Н + , на катоде могут протекать конкурирующие процессы как восстановления катионов, так и выделения водорода.

Рассмотрим в качестве примера электролиз водного раствора хлорида меди на инертных электродах. В растворе находятся ионы Си

2+ и 2Сl- , которые под действием электрического тока направляются к соответствующим электродам:

На катоде выделяется металлическая медь, на аноде - газообразный хлор.

Если в рассмотренном примере электролиза раствора

CuCl 2 в качестве анода взять медную пластинку, то на катоде выделяется медь, а на аноде, где происходят процессы окисления, вместо разрядки ионов С l- и выделения хлора протекает окисление анода (меди). В этом случае происходит растворение самого анода, и в виде ионов Си он переходит в раствор. Электролиз CuCl 2 с растворимым анодом можно записать так:

Электролиз растворов солей с растворимым анодом сводится к окислению материала анода (его растворению) и сопровождается переносом металла с анода на катод. Это свойство широко используется при рафинировании (очистке) металлов от загрязнений.

Электролиз расплавов. Для получения высокоактивных металлов (натрия, алюминия, магния, кальция и др.), легко вступающих во взаимодействие с водой, применяют электролиз расплава солей или оксидов:

Если пропускать электрический ток через водный раствор соли активного металла и кислородсодержащей кислоты, то ни катионы металла, ни ионы кислотного остатка не разряжаются. На катоде выделяется водород,

а на аноде - кислород, и электролиз сводится к электролитическому разложению воды.

Электролиз растворов электролитов проводить энергетически выгоднее, чем расплавов, так как электролиты - соли и щелочи - плавятся при очень высоких температурах.

Закон электролиза Фарадея.

Зависимость количества вещества, образовавшегося под действием электрического тока, от времени, силы тока и природы электролита может быть установлена на основании обобщенного закона Фарадея :

где т - масса образовавшегося при электролизе вещества (г); Э - эквивалентная масса вещества (г/моль); М - молярная масса вещества (г/моль); п - количество отдаваемых или принимаемых электронов;

I - сила тока (А); t - продолжительность процесса (с); F - константа Фарадея, характеризующая количество электричества, необходимое для выделения 1 эквивалентной массы вещества (F = 96 500 Кл/моль = 26,8 А×ч/моль).

Описание

В процессе окислительно-восстановительной реакции восстановитель отдаёт электроны, то есть окисляется ; окислитель присоединяет электроны, то есть восстанавливается . Причём любая окислительно-восстановительная реакция представляет собой единство двух противоположных превращений - окисления и восстановления, происходящих одновременно и без отрыва одного от другого.

Окисление

Окисление - процесс отдачи электронов, с увеличением степени окисления.

При окисле́нии вещества в результате отдачи электронов увеличивается его степень окисления. Атомы окисляемого вещества называются донорами электронов, а атомыокислителя - акцепторами электронов.

В некоторых случаях при окислении молекула исходного вещества может стать нестабильной и распасться на более стабильные и более мелкие составные части (см. Свободные радикалы). При этом некоторые из атомов получившихся молекул имеют более высокую степень окисления, чем те же атомы в исходной молекуле.

Окислитель, принимая электроны, приобретает восстановительные свойства, превращаясь в сопряжённый восстановитель:

окислитель + e − ↔ сопряжённый восстановитель .

Восстановление

При восстановлении атомы или ионы присоединяют электроны. При этом происходит понижение степени окисления элемента. Примеры: восстановление оксидов металлов до свободных металлов при помощи водорода, углерода, других веществ; восстановление органических кислот в альдегиды и спирты; гидрогенизация жиров и др.

Восстановитель, отдавая электроны, приобретает окислительные свойства, превращаясь в сопряжённый окислитель:

восстановитель - e − ↔ сопряжённый окислитель .

Несвязанный, свободный электрон является сильнейшим восстановителем.

Окислительно-восстановительная пара

Окислитель и его восстановленная форма, либо восстановитель и его окисленная форма составляет сопряжённую окислительно-восстановительную пару , а их взаимопревращения являются окислительно-восстановительными полуреакциями.



В любой окислительно-восстановительной реакции принимают участие две сопряжённые окислительно-восстановительные пары, между которыми имеет место конкуренция за электроны, в результате чего протекают две полуреакции: одна связана с присоединением электронов, т.е. восстановлением, другая - с отдачей электронов, т.е. окислением.

Виды окислительно-восстановительных реакций

Межмолекулярные - реакции, в которых окисляющиеся и восстанавливающиеся атомы находятся в молекулах разных веществ, например:

Н 2 S + Cl 2 → S + 2HCl

Внутримолекулярные - реакции, в которых окисляющиеся и восстанавливающиеся атомы находятся в молекулах одного и того же вещества, например:

2H 2 O → 2H 2 + O 2

Диспропорционирование (самоокисление-самовосстановление) - реакции, в которых один и тот же элемент выступает и как окислитель, и как восстановитель, например:

Cl 2 + H 2 O → HClO + HCl

Репропорционирование (конпропорционирование) - реакции, в которых из двух различных степеней окисления одного и того же элемента получается одна степень окисления, например:

NH 4 NO 3 → N 2 O + 2H 2 O

Примеры

Окислительно-восстановительная реакция между водородом и фтором

Разделяется на две полуреакции:

1) Окисление:

2) Восстановление:

Окисление, восстановление

В окислительно-восстановительных реакциях электроны от одних атомов, молекул или ионов переходят к другим. Процесс отдачи электронов - окисление. При окислении степень окисления повышается:

Окислитель и восстановитель используют для составления реакции в органической и неорганической химии. Рассмотрим основные характеристики таких взаимодействий, выявим алгоритм составления уравнения и расстановки коэффициентов.

Определения

Окислитель - это атом либо ион, который при взаимодействии с другими элементами принимает электроны. Процесс принятия электронов называют восстановлением, и связан он с понижением степени окисления.

В курсе неорганической химии рассматривается два основных метода расстановки коэффициентов. Восстановитель и окислитель в реакциях определяют путем составления электронного баланса либо методом полуреакций. Подробнее остановимся на первом способе расставления коэффициентов в ОВР.

Степени окисления

Прежде чем определять окислитель в реакции, нужно расставить степени окисления у всех элементов в веществах, участвующих в превращении. Она представляет собой заряд атома элемента, вычисленный по определенным правилам. В сложных веществах сумма всех положительных и отрицательных степеней окисления должна быть равна нулю. Для металлов главных подгрупп она соответствует валентности и имеет положительную величину.

Для неметаллов, которые в формуле располагаются в конце, степень определяется путем вычитания из восьми номера группы и имеет отрицательное значение.

У простых веществ она равна нулю, так как не наблюдается процесса принятия или отдачи электронов.

У сложных соединений, состоящих из нескольких химических элементов, для определения степеней окисления используют математические вычисления.

Итак, окислитель - это атом, который в процессе взаимодействия понижает свою степень окисления, а восстановитель, напротив, повышает ее значение.

Примеры ОВР

Основной особенностью заданий, связанных с расстановкой коэффициентов в окислительно-восстановительных реакциях, является определение пропущенных веществ и составление их формул. Окислитель - это элемент, который будет принимать электроны, но помимо него в реакции должен участвовать и восстановитель, отдающий их.

Приведем обобщенный алгоритм, по которому можно выполнять задания, предлагаемые выпускникам старшей школы на едином государственном экзамене. Рассмотрим несколько конкретных примеров, чтобы понять, что окислитель - это не только элемент в сложном веществе, но и простое вещество.

Сначала необходимо расставить у каждого элемента значения степеней окисления, используя определенные правила.

Далее нужно проанализировать элементы, которые не участвовали в образовании веществ, и составить для них формулы. После того как все пропуски будут ликвидированы, можно переходить к процессу составления электронного баланса между окислителем и восстановителем. Полученные коэффициенты ставят в уравнение, при необходимости добавляя их перед теми веществами, которые не вошли в баланс.

Например, пользуясь методом электронного баланса, необходимо завершить предложенное уравнение, расставить перед формулами необходимые коэффициенты.

H 2 O 2 + H 2 SO 4 +KMnO 4 = MnSO 4 + O 2 + …+…

Для начала у каждого определим значения степеней окисления, получим

H 2+ O 2 - + H 2+ S +6 O 4 -2 +K + Mn +7 O 4 -2 = Mn +2 S +6 O 4 -2 + O 2 0 + …+…

В предложенной схеме они меняются у кислорода, а также у марганца в перманганате калия. Таким образом, восстановитель и окислитель нами найдены. В правой части отсутствует вещество, в котором бы был калий, поэтому вместо пропусков составим формулу его сульфата.

Последним действием в данном задании будет расстановка коэффициентов.

5H 2 O 2 + 3H 2 SO 4 +2KMnO 4 = 2Mn SO 4 + 5O 2 + 8H 2 O + K 2 SO 4

В качестве сильных окислителей можно рассмотреть кислоты, перманганат калия, перекись водорода. Все металлы проявляют восстановительные свойства, превращаясь в реакции в катионы, имеющие положительный заряд.

Заключение

Процессы, касающиеся принятия и отдачи отрицательных электронов, происходят не только в неорганической химии. Обмен веществ, который осуществляется в живых организмах, является наглядным вариантом протекания окислительно-восстановительных реакций в органической химии. Это подтверждает значимость рассмотренных процессов, их актуальность для живой и неживой природы.