Юбки

Волс одномодовый максимальная длина кабеля. Одномодовый и многомодовый оптический кабель

Принцип передачи данных волоконно-оптическим кабелем

Как известно, все данные в компьютере представляются в виде нулей и единиц. Все стандартные кабели передают бинарные данные с помощью электрических импульсов. И только волоконно-оптический кабель, используя тот же принцип, передает данные с помощью световых импульсов. Источник света посылает данные по волоконно-оптическому «каналу», а принимающая сторона должна преобразовать полученные данные в необходимый формат.

Канал оптической передачи состоит из передатчика, световедущего оптического волокна и приёмника.

Существуют два типа оптоволоконных кабелей:

-многомодовый (multimode) , или мультимодовый, кабель, более дешевый, но менее качественный (ММ );

-одномодовый (single mode) кабель, более дорогой, но имеющий лучшие характеристики (SM ).

Основные различия между этими типами связаны с разными режимами прохождения световых лучей в кабеле.

Одномодовый кабель имеет диаметр центрального волокна 3 - 10 мкм. Для передачи данных используют свет с длиной волны 1300 и 1500 нм. Дисперсия и потери сигнала на этих частотах очень незначительны, что позволяет передавать сигналы на значительно большее расстояние, чем в случае применения многомодового кабеля. Однако длина одномодового кабеля может достигать 80 км.

В многомодовом кабеле траектории световых лучей имеют заметный разброс, в результате чего форма сигнала на приемном конце кабеля искажается (Рис). Центральное волокно имеет диаметр 62,5 мкм, а диаметр внешней оболочки - 125 мкм (это иногда обозначается как 62,5/125). Допустимая длина кабеля достигает 2-5 км.

Для передачи данных на одном конце оптоволокна устанавливают передатчик-излучатель, на другом - фотоприемник. Тем самым, одновременно задействованы два волокна, одно из которых передает, а другое – принимает данные. Принятый оптический сигнал преобразуется в электрический с помощью специальных устройств – медиаконвертеров (Рис. 107), имеющих порты для подключения оптоволокна и кабеля «витая пара». Медиаконвертеры могут иметь исполнение в виде модулей, подключаемых непосредственно в слот коммутатора, как это показано на рис.

В последнее время для экономии числа волокон (а также соединительной аппаратуры) используют волновое мультиплексирование (WDM, Wave Division Multiplexing ): на одной длине волны передают сигнал в одном направлении, на другой - в обратном. Для этого используются приемопередатчики со встроенным WDM и одним разъемом для подключения волокна. На противоположных концах линии устанавливают разнотипные приемопередатчики: у одного передатчика длина волны равна1300 нм, у приемника – 1550 нм; у другого - наоборот.



Многомодовое волокно, в свою очередь, бывает двух типов: со ступенчатым и градиентным профилями показателя преломления по его сечению.


Рис.1 Одномодовое и многомодовое оптическое волокно

Оптоволоконные кабели имеют схожую структуру, но могут отличаться по различным характеристикам. По количеству модулей, волокон, толщине, материалу внешней оболочки и т.д. Оптические кабели бывают одномодовыми и многомодовыми. Кабель оптический одномодовый предназначен для передачи одного луча света, а многомодовый – нескольких лучей. Как правило, кабель оптический одномодовый предназначен для использования в телекоммуникационных сетях, для создания магистралей по передачи данных на большие расстояния.

В тоже время, многомодовые используются в сетях средней и малой дальности. имеет отличающуюся от многомодового структуру. В последнее время говорится о том, что многомодовые оптоволоконные кабели имеют преимущество перед одномодовыми, это по сути дела так, потому что они более чем в стократ превосходят одномодовые по производительности. Но, не смотря на все это, на дальние расстояния все же предпочтительней использовать одномодовые оптические кабели, потому что они давно и хорошо зарекомендовали себя в этой области.

Назначение кабеля оптического одномодового

Современный кабель оптический одномодовый является разновидностью оптоволоконного кабеля и предназначается для передачи одного пучка света (посредством многомодового передаются несколько пучков одновременно) при использовании в составе телекоммуникационных сетей и при организации магистралей, передающих данные на значительные расстояния.

Существующие ныне оптоволоконные кабели при схожести структуры различаются своими характеристиками, зависящими от количества модулей, толщины, числа волокон, материала внешней оболочки и проч. Кабель оптический одномодовый, в отличие от многомодового, при передаче сигнала по определению лишен межмодовой дисперсии, возникающей в результате разновременности достижения противоположного конца кабеля вводимыми в волокно одновременно разными модами. Одной из важных характеристик кабеля является также СКС-диаметр его сердцевины, для одномодового это, как правило, 8-10 мкм.

Путем практических исследований различных оптических кабелей специалисты определили, что при расстояниях, превышающих между объектами 500 метров, стоит отдать предпочтение одномодовым, обеспечивающим высокую и надежную скорость передачи на большой дальности при строительстве крупномасштабных сетей. Многомодовый кабель показывал результаты пониже.

Особенности кабеля оптического одномодового

Свое наименование кабель оптический одномодовый получил из-за того, что в процессе работы в оптоволокне образуется небольшое число мод, поэтому принято условно считать, что свет при этом распространяется по единственной траектории, следовательно, такое волокно и назвали одномодовым. А так, современное оптоволокно может нести в себе более двух сотен параллельных волокон, при этом, как правило, имеется возможность комбинировать сочетания в одном кабеле волокон, относящихся к разным типам.

Конструктивно оптоволоконный кабель состоит из единственной или же нескольких оптических волокон, являющихся, по сути, стеклянными нитями. Соответственно, передача информации производится переносом света внутри оптоволокна. Используется при этом процесс, называемый полным внутренним отражением. Принцип работы базируется на том, что световые волны отражаются от границы, разделяющей две прозрачные среды с различными показателями преломления.

Чаще всего кабель оптический одномодовый применяется для организации волоконно-оптических систем связи, прокладываемым по тоннелям, коллекторам и внутри зданий и помещений. Наружная оболочка его выполняется, как правило, из материалов, не поддерживающих и не распространяющих горение.

Преимущества кабеля оптического одномодового

Современный кабель оптический одномодовый характеризуется существенными преимуществами перед используемыми ранее медными проводниками. К ним безусловно относятся:
  • значительно большая полоса пропускания,
  • повышенная степень помехозащищенности (в частности, в области невосприимчивости к электромагнитным помехам и наводкам),
  • относительно малые объем и вес,
  • световой сигнал с малым затуханием,
  • гальваническая развязка вновь подключаемого оборудования,
  • надежная защита от несанкционированных подключений, что дополнительно защищает передаваемую информацию и проч.
Среди основных параметров оптоволоконных кабелей выделяют длину волны, размер волокон, диапазон минимальной полосы пропускания, максимальное затухание и ряд других. Кабель оптический одномодовый позволяет транслировать данные на скоростях до сотен Гбит/с при снижении стоимости материалов и технологий.

Несмотря на огромное разнообразие оптоволоконных кабелей, волокна в них практически одинаковые. Более того, производителей самих волокон намного меньше (наиболее известны Corning, Lucent и Fujikura), чем производителей кабелей.

По типу конструкции, вернее по размеру серцевины, оптические волокна делятся на одномодовые (ОМ) и многомодовые (ММ). Строго говоря, употреблять эти понятия следует относительно конкретной используемой длины волны, но после рассмотрения Рисунка 8.2, становится понятно, что на сегодняшнем этапе развития технологий можно это не учитывать.

Рис. 8.3. Одномодовые и многомодовые оптические волокна

В случае многомодового волокна диаметр сердечника (обычно 50 или 62,5 мкм) почти на два порядка больше, чем длина световой волны. Это означает, что свет может распространяться в волокне по нескольким независимым путям (модам). При этом очевидно, что разные моды имеют разную длину, и сигнал на приемнике будет заметно "размазан" по времени.

Из-за этого хрестоматийный тип ступенчатых волокон (вариант 1), с постоянным коэффициентом преломления (постоянной плотностью) по всему сечению сердечника, уже давно не используется из-за большой модовой дисперсии.

На смену ему пришло градиентное волокно (вариант 2), которое имеет неравномерную плотность материала сердечника. На рисунке хорошо видно, что длины пути лучей сильно сокращены за счет сглаживания. Хотя лучи, проходящие дальше от оси световода, преодолевают большие расстояния, они при этом имеют большую скорость распространения. Происходит это из-за того, что плотность материала от центра к внешнему радиусу уменьшается по параболическому закону. А световая волна распространяется тем быстрее, чем меньше плотность среды.

В результате более длинные траектории компенсируются большей скоростью. При удачном подборе параметров, можно свести к минимуму разницу во времени распространения. Соответственно, межмодовая дисперсия градиентного волокна будет намного меньше, чем у волокна с постоянной плотностью сердечника.



Однако, как бы не были сбалансированы градиентные многомодовые волокна, полностью устранить эту проблему можно только при использовании волокон, имеющих достаточно малый диаметр сердечника. В которых, при соответствующей длине волны, будет распространяться один единственный луч.

Реально распространено волокно с диаметром сердечника 8 микрон, что достаточно близко к обычно используемой длине волны 1,3 мкм. Межчастотная дисперсия при неидеальном источнике излучения остается, но ее влияние на передачу сигнала в сотни раз меньше, чем межмодовой или материальной. Соответственно, и пропускная способность одномодового кабеля намного больше, чем многомодового.

Как это часто бывает, у более производительного типа волокна есть свои недостатки. В первую очередь, конечно, это более высокая стоимость, обусловленная стоимостью комплектующих, и требованиями к качеству монтажа.

Таб. 8.1. Сравнение одномодовых и многомодовых технологий.

Параметры Одномодовые Многомодовые
Используемые длины волн 1,3 и 1,5 мкм 0,85 мкм, реже 1,3 мкм
Затухание, дБ/км. 0,4 - 0,5 1,0 - 3,0
Тип передатчика лазер, реже светодиод светодиод
Толщина сердечника. 8 мкм 50 или 62,5 мкм
Стоимость волокон и кабелей. Около 70% от многомодового -
Средняя стоимость конвертера в витую пару Fast Ethernet. $300 $100
Дальность передачи Fast Ethernet. около 20 км до 2 км
Дальность передачи специально разработанных устройств Fast Ethernet. более 100 км. до 5 км
Возможная скорость передачи. 10 Гб, и более. до 1 Гб. на ограниченной длине
Область применения. телекоммуникации локальные сети

Виды и типы разъемов

Рассмотрим разъемные соединения. Если предел дальности действия высокоскоростных электропроводных линий на основе витой пары зависит от разъемов, то в оптоволоконных системах вносимые ими дополнительные потери достаточно малы. Затухание в них оставляет около 0,2-0,3 дБ (или несколько процентов).

Поэтому вполне возможно создавать сети сложной топологии без использования активного оборудования, коммутируя волокна на обычных разъемах. Особенно заметны преимущества такого подхода на небольших по протяженности, но разветвленных сетях "последней мили". Очень удобно отводить по одной паре волокон на каждый дом от общей магистрали, соединяя остальные волокна в коммутационной коробке "на проход".

Что основное в разъемном соединении? Конечно, сам разъем. Основные его функции заключаются в фиксация волокна в центрирующей системе (соединителе), и защите волокна от механических и климатических воздействий.

Основные требования к разъемам следующие:

· внесение минимального затухания и обратного отражения сигнала;

· минимальные габариты и масса при высокой прочности;

· долговременная работа без ухудшения параметров;

· простота установки на кабель (волокно);

· простота подключения и отключения.

На сегодня известно несколько десятков типов разъемов, и нет того единого, на который было бы стратегически сориентировано развитие отрасли в целом. Но основная идея все вариантов конструкций проста и достаточно очевидна. Необходимо точно совместить оси волокон, и плотно прижать их торцы друг к другу (создать контакт).

Рис. 8.6. Принцип действия оптоволоконного разъема контактного типа

Основная масса разъемов выпускается по симметричной схеме, когда для соединения разъемов используется специальный элемент - coupler (соединитель). Получается, что сначала волокно закрепляется и центрируется в наконечнике разъема, а затем уже сами наконечники центрируются в соединителе.

Таким образом, можно видеть, что на сигнал влияют следующие факторы:

· Внутренние потери - вызванные допусками на геометрические размеры световодов. Это эксцентриситет и эллиптичность сердцевины, разность диаметров (особенно при соединении волокон разного типа);

· Внешние потери, которые зависят от качества изготовления разъемов. Возникают из-за радиального, углового смещения наконечников, непараллельности торцевых поверхностей волокон, воздушного промежутка между ними (френелевские потери);

· Обратное отражение. Возникает из-за наличия воздушного промежутка (френелевское отражение светового потока в обратном направлении на границе стекло-воздух-стекло). Согласно стандарта TIA/EIA-568А, нормируется коэффициент обратного отражения (отношение мощности отраженного светового потока к мощности падающего). Он должен быть не хуже -26 дБ для одномодовых разъемов, и не хуже -20 дБ для многомодовых;

· Загрязнение, которое, в свою очередь, может вызвать как внешние потери, так и обратное отражение.

Типы оптических волокон

Существует два типа оптических волокон: многомодовые (ММ ) и одномодовые (SM ), отличающиеся диаметрами световедущей сердцевины. Многомодовое волокно , в свою очередь, бывает двух типов: со ступенчатым и градиентным профилями показателя преломления по его сечению.

Многомодовое оптическое волокно со ступенчатым показателем преломления

В ступенчатом оптоволокне могут возбуждаться и распространяться до тысячи мод с различным распределением по сечению и длине оптоволокна. Моды имеют различные оптические пути и, следовательно, различные времена распространения по оптоволокну, что приводит к уширению импульса света по мере его прохождения по оптоволокну. Это явление называется межмодовой дисперсией и оно непосредственно влияет на скорость передачи информации по оптоволокну. Область применения ступенчатых оптоволокон короткие (до 1 км) линии связи со скоростями передачи информации до 100 Мбайт/с, рабочая длина волны излучения, как правило, 0,85 мкм.

Многомодовое оптическое волокно с градиентным показателем преломления

Отличается от ступенчатого тем, что показатель преломления изменяется в нём плавно от середины к краю. В результате моды идут плавно, межмодовая дисперсия меньше.

Градиентное оптоволокно в соответствии со стандартами имеет диаметр сердцевины 50 мкм и 62,5 мкм, диаметр оболочки 125 мкм. Оно применяется во внутриобъектовых линиях длиной до 5 км, со скоростями передачи до 100 Мбайт/c на длинах волн 0,85 мкм и 1,35 мкм.

Одномодовое оптическое волокно

Стандартное одномодовое оптическое волокно имеет диаметр сердцевины 9 мкм и диаметр оболочки 125 мкм

В этом оптоволокне существует и распространяется только одна мода (точнее две вырожденные моды с ортогональными поляризациями), поэтому в нем отсутствует межмодовая дисперсия, что позволяет передавать сигналы на расстояние до 50 км со скоростью до 2,5 Гбит/с и выше без регенерации. Рабочие длины волн λ1 = 1,31 мкм и λ2 = 1,55 мкм.

Окна прозрачности оптоволокна.

Говоря об окнах прозрачности оптического волокна, обычно рисуют такую картинку.

Окна прозрачности оптоволокна

В настоящее время оптоволокно с такой характеристикой уже считается устаревшим. Достаточно давно освоен выпуск оптоволокна типа AllWave ZWP (zero water peak, с нулевым пиком воды), в котором устранены гидроксильные ионы в составе кварцевого стекла. Такое стекло имеет уже не окно, а прямо таки проём в диапазоне от 1300 до 1600 нм.

Все окна прозрачности лежат в инфракрасном диапазоне, то есть свет, передающийся по ВОЛС, не виден глазу. Стоит заметить, что в стандартное оптоволокно можно ввести и видимое глазом излучение. Для этого применяют либо небольшие блоки, присутствующие в некоторых рефлектометрах, либо даже слегка переделанную китайскую лазерную указку. С помощью таких приспособлений можно находить переломы в шнурах. Там, где оптоволокно сломано, будет видно яркое свечение. Такой свет быстро затухает в волокне, так что использовать его можно только на коротких расстояниях (не более 1 км).

Гибкость оптического волокна

Фотография, надеюсь, успокоит тех, кто привык видеть стекло бьющимся и хрупким.

Оптоволокно. Гибкость оптоволокна

Здесь изображено стандартное одномодовое волокно. То самое, 125 мкм кварцевого стекла, использующееся повсеместно. Из-за лакового покрытия оптоволокно способно выдерживать изгибы радиусом в 5 мм (хорошо видно на рисунке). Свет, а значит и сигнал через такой изгиб, увы, уже не проходит.

Информация о расшифровке маркировки оптоволоконных кабелей размещавшееся в этом месте размещена на страницах:

Оптоволокно

Волокна из кварцевого стекла, получившие наибольшее распространение в системах телекоммуникаций, разделяют на две основных категории - одномодовое (SM - single-mode) и многомодовое (MM - multimode). Оба типа имеют свои преимущества и недостатки, которые необходимо учитывать при проектировании линии связи. Многомодовому оптическому волокну посвящена . Базовые вопросы волоконно-оптической связи (понятие оптоволокна, его основные характеристики, понятие моды…) обсуждаются в статье « ».

Структура одномодового волокна и особенности передачи оптического излучения

Одномодовое волокно , как следует из названия, способно распространять на рабочей длине волны только одну основную (фундаментальную) моду оптического излучения. Одномодовый режим достигается за счет очень маленького диаметра сердцевины (обычно 7-10 мкм). Основная мода распространяется вблизи центральной оси волокна, при этом часть оптической мощности распространяется в оболочке, что повышает требования к оптическим свойствам оболочки. Чтобы учесть эту особенность, для описания одномодового оптического волокна помимо диаметра сердцевины используется еще и такой параметр, как диаметр модового пятна , который определяется как диаметр окружности, на которой мощность излучения уменьшается в е раз. Иными словами, в пределах этой окружности распространяется бо́льшая часть оптического излучения. (рис. 1). Очевидно, что диаметр модового пятна чуть больше диаметра сердцевины.

Рис. 1. Понятие модового пятна

Применительно к одномодовому оптическому волокну также вводится параметр длины волны отсечки . Если длина волны излучения меньше длины волны отсечки, в волокне начинают распространяться несколько мод, то есть оно становится многомодовым. Это важно учитывать при выборе рабочей длины волны. В стандартном одномодовом волокне длина волны отсечки имеет величину 1260 нм. Типичные рабочие длины волн для одномодового кварцевого волокна - 1310 и 1550 нм (второе и третье окна прозрачности, затухание меньше 0,4 дБ/км, см. рис. 2).

Рис. 2. Затухание в одномодовом кварцевом волокне

Набольшее распространение в телекоммуникациях получило кварцевое одномодовое волокно с соотношением диаметров сердцевины и оболочки 9/125 мкм. Как и в случае многомодового волокна, на одномодовое волокно наносится первичное защитное покрытие диаметром примерно 250 мкм (бывают другие размеры).

Отличия от многомодового волокна

В одномодовом волокне отсутствует межмодовая дисперсия, то есть уширение сигнала во времени из-за разницы в скорости распространения мод. Поэтому одномодовое волокно характеризуется очень большой величиной ширины полосы пропускания (десятки и даже сотни ТГц*км). Стандартное одномодовое волокно имеет ступенчатый профиль показателя преломления.

Величина затухания в одномодовом оптоволокне в несколько раз меньше, чем в многомодовом и примерно в 1000 раз меньше, чем затухание в кабеле на витой паре Cat6 (данные для частоты 500 МГц).

Таким образом, одномодовое волокно позволяет передавать информацию на очень большие расстояния (до 300 км) на высокой скорости без ретрансляции (восстановления) сигнала, причем характеристики передачи определяются главным образом свойствами активного оборудования.

С другой стороны, одномодовое волокно требует большой точности при вводе излучения и при стыковке оптических волокон друг с другом, что повышает стоимость используемых волоконно-оптических компонентов (активное оборудование, соединительные изделия) и усложняет процесс монтажа и обслуживания линий.

История и классификация

Первые одномодовые волокна появились в начале 1980-х годов и, благодаря своим отличным характеристикам передачи, стали активно использоваться в протяженных линиях связи. В то же время для передачи на короткие расстояния, например, в локальных сетях, продолжалось использование многомодового волокна. Со временем, в связи с уменьшением стоимости как самого волокна, так и компонентов для него, одномодовое волокно стало завоевывать все большую популярность и в непротяженных сетях. Таким образом, сегодня кварцевое одномодовое волокно является самым распространенным типом оптического волокна для передачи информации.

Для многомодовых волокон традиционным стало деление на 4 класса (OM1, OM2, OM3, OM4), в соответствии со стандартом ISO/IEC 11801. Для одномодового волокна существует похожее деление, однако оно далеко не так однозначно.

Международный стандарт ISO/IEC 11801 и европейский стандарт EN 50173, выпущенные в 1995 году, описывали только один тип одномодового волокна, получивший обозначение OS1 (Optical Single-Mode). Величина затухания, указанная для него, составляла 1 дБ/км на длинах волн 1310 и 1550 нм. По мере увеличения скорости и дальности передачи информации, стало ясно, что оптоволокно с таким затуханием уже не отвечает необходимым требованиям. Поэтому появилась новая категория одномодового волокна, названная OS2, в котором затухание было менее 0,4 дБ/км, причем это оптическое волокно имело низкий водный пик (увеличение затухания на длине волны 1383 нм, см. рис. 2). Параметры затухания указывались для волокна, заключенного в кабель. Традиционно считалось, что OS1 следует применять в кабелях с плотным буфером (tight buffer) для внутренней прокладки, а OS2 - в кабелях со свободным буфером (loose tube) для наружной прокладки.

В дальнейшем стандарты ISO/IEC и EN несколько раз переиздавались, и в них появлялись отличия в описании волокон OS1 и OS2. Это стало причиной путаницы в этих понятиях. Однако стоит отметить, что сегодня одномодовое волокно с затуханием 1 дБ/км практически не выпускается. Поэтому, в сущности, необходимость в такой классификации отпадает. Часто производители одномодовых волокон и кабелей обозначают свои изделия как OS2.

В дальнейшем появилось еще несколько разновидностей одномодовых кварцевых волокон, характеристики которых отличаются более существенно. Эти волокна были описаны в стандартах ITU-T G.652-657, IEC 60793-2-50, TIA-492CA/TIA-492EA. Отметим некоторые из этих разновидностей, которые представляют практический интерес в телекоммуникациях. Для определенности будем пользоваться рекомендациями ITU-T, которые чаще всего используются по отношению к одномодовому оптоволокну.

Типы одномодовых волокон

1. Одномодовое волокно с несмещенной дисперсией, G.652

Наиболее распространенный тип одномодового волокна с точкой нулевой хроматической дисперсии на длине волны 1300 нм. Стандарт выделяет четыре подкласса (A, B, C и D), отличающихся своими характеристиками. Особо стоит отметить волокна G.652.C и G.652.D - они имеют низкое затухание на длине волны 1383 нм, то есть в области «водного пика», а потому могут использоваться в системах CWDM. Такие волокна еще называют «всеволновыми».

2. Одномодовое волокно с нулевой смещенной дисперсией, G.653
(ZDSF - Zero Dispersion-Shifted Fiber)

Изменяя профиль показателя преломления, можно сдвинуть точку нулевой дисперсии в третье окно прозрачности (1550 нм), что позволяет увеличить дальность передачи сигнала при работе в этом диапазоне.

3. Одномодовое волокно со смещенной длиной волны отсечки, G.654

Этот тип волокна имеет точку нулевой дисперсии на 1300 нм. Однако благодаря чуть большему диаметру сердцевины длина волны отсечки и область минимального затухания смещены в область длин волн 1550 нм. Такое оптоволокно может использоваться для цифровой передачи на большие расстояния, например, в наземных системах дальней связи и магистральных подводных кабелях с оптическими усилителями.

4. Одномодовое волокно с ненулевой смещенной дисперсией, G.655
(NZDSF - Non-Zero Dispersion Shifted Fiber)

Предназначено для передачи на длинах волн вблизи 1550 нм и оптимизировано для систем DWDM. Абсолютное значение коэффициента хроматической дисперсии в этом волокне больше некоего ненулевого значения в диапазоне длин волн от 1530 нм до 1565 нм. Ненулевая дисперсия препятствует возникновению нелинейных эффектов, которые особенно вредны для DWDM систем.

5. Одномодовое волокно c ненулевой смещенной дисперсией для широкополосной передачи, G.656

Подобно волокну G.655, имеет ненулевое значение коэффициента хроматической дисперсии, но уже в диапазоне длин волн 1460-1625 нм, поэтому хорошо подходит как для систем DWDM, так и для CWDM.

6. Одномодовое волокно, не чувствительное к потерям на макроизгибе, G.657 (Bend-Insensitive)

Помимо оптических свойств, важную роль играют и механические характеристики оптоволокна, в частности, его чувствительность к изгибам. Особенно это важно при прокладке внутри помещения, где волокно часто нужно изгибать. Стандарт G.657 выделяет несколько подклассов одномодового волокна, отличающихся минимальным радиусом изгиба и соответствующей величиной потерь (на одном или нескольких витках).

Описанные стандарты оптических волокон не всегда взаимоисключают друг друга. К примеру, распространенное оптоволокно компании Corning марки SMF-28® Ultra соответствует стандартам G.652.D и G.657.A1. В то же время бывают случаи, когда оптические волокна разных типов не совместимы друг с другом.

Активные компоненты

Поскольку одномодовое волокно имеет маленький диаметр сердцевины, в качестве источников излучения для него используются узконаправленные полупроводниковые лазеры, работающие во втором и третьем окнах прозрачности кварцевого волокна. Как правило, используются следующие типы лазеров:

1) Лазер с резонатором Фабри-Перо (FP - Fabry-Perot) - простейший тип полупроводникового лазера, характеризующийся большой шириной спектра (2 нм). Широкий спектр приводит к увеличению влияния хроматической дисперсии, что ограничивает расстояние передачи сигнала.

2) Лазер с распределенной обратной связью (DFB - distributed feedback) имеет конструкцию, способствующую уменьшению ширины спектра излучения до 0,1 нм, что позволяет использовать такие лазеры в более высокоскоростных и протяженных системах.

3) Лазер с внешней модуляцией (EML - externally modulated laser). Предыдущие типы излучателей относятся к категории лазеров с внутренней (прямой) модуляцией, при которой мощность излучения модулируется непосредственно током питания лазера. В системах, где важную роль играет стабильность длины волны излучения (например, в высокоскоростных системах и в системах WDM) применяются DFB лазеры, излучение которых модулируется внешним устройством модулятором.

Применение одномодового волокна

Итак, использование одномодового кварцевого волокна позволяет осуществить передачу информационного сигнала на десятки и даже сотни километров на высокой скорости (десятки Гбит/с).

Кроме того, как уже было отмечено выше, некоторые виды одномодового волокна можно использовать в сетях со спектральным уплотнением каналов (CWDM, DWDM), когда по одному оптоволокну одновременно распространяется излучение на нескольких длинах волн, причем в обоих направлениях (рис. 3). Это позволяет увеличить скорость передачи и объем передаваемой информации еще в большей степени. Частным случаем применения спектрального уплотнения является пассивная оптическая сеть (PON), в которой информация передается на трех длинах волн (1310, 1490 и 1550 нм).

Рис. 3. Каналы CWDM и DWDM и спектр затухания одномодового волокна (сплошная линия - стандартное волокно с водным пиком на 1383 нм, пунктирная линия - волокно с низким водным пиком)

________________________________________________________________