Свой стиль

Характеристика методов исследования. Конспект по географии на тему "современные космические методы исследования земли" Что такое космический метод исследования

С

игнал «бип-бип...» первого советского спутника 4 октября 1957 г. возвестил о начале новой, космической эры в истории человечества. А спустя почти четыре года, 12 апреля 1961 г. Юрий Алексеевич Гагарин совершил первый полет человека в космос, взглянув на Землю со стороны, и стал зачинателем ее изучения с орбиты. 6 и 7 августа того же года Герман Степанович Титов , 17 раз обогнув планету, сделал несколько снимков ее поверхности, - с этого началась планомерная космическая фотосъемка.

С тех пор количество дистанционных наблюдений растет лавинообразно; появились разнообразные фотографические и нефотографические системы, в том числе многозональные фотокамеры, телевизионные камеры со специальной передающей электронно-лучевой трубкой (видиконом), инфракрасные сканирующие радиометры,Сканирующей называется аппаратура, обеспечивающая получение изображений в видимой или инфракрасной областях электромагнитного спектра путем последовательного построчного прослеживания участка местности. микроволновые радиометры для радиотепловой съемки, различные радары для активного зондирования (т. е. посылающие сигналы и регистрирующие их отражение от поверхности Земли). Значительно возросло и количество космических летательных аппаратов - искусственные спутники, орбитальные станции и пилотируемые корабли. Передаваемая ими обширная и разнообразная информация используется в ряде отраслей знания, включая такие науки о Земле, как геоморфология и геология, океанология и гидрография. В результате возникло новое научное направление - космическое землеведение, изучающее закономерности состава и строения геосферы, в частности рельеф и гидрографию суши, акватории океанов и морей.

Информация о любом уголке Земли, получаемая с помощью космических методов землеведения, характеризуется уникальностью, обзорностью и относительной дешевизной на единицу исследуемой площади, большой достоверностью и оперативностью, может повторяться с требуемой периодичностью или быть практически непрерывной. Космические методы позволяют выявить частоту нахождения, ритмичность и силу природных процессов глобального, зонального, регионального и локального характера. С их помощью удается исследовать взаимосвязь всех составных частей геосферы и создавать карты слабо изученных в топографическом отношении субтропических и тропических областей. Наконец, эти методы дают возможность в короткие сроки получить снимки огромных территорий и выявить единство пространственно разобщенных крупных элементов рельефа - гигантских кольцевых и линейных структур. Ранее существование некоторых лишь предполагалось, в лучшем случае недооценивалось, многие же совершенно не были известны. Ныне уже ни у кого не вызывает сомнений, что они имеют самостоятельное значение и определяют основные черты строения земной поверхности.

Космос - картографам

Д

о последнего времени мелкомасштабные физические карты мира, континентов, отдельных государств или крупных регионов создавались путем сведения и преобразования материалов топокарт крупных и средних масштабов, основанных на данных аэросъемочных и наземных топографо-геодезических работ. Такое обобщение контуров зависит от действующих инструкций и приемов картосоставления, а также от ряда чисто субъективных факторов. Благодаря региональным и глобальным космическим снимкам автоматически удалось получить новые объективные физические карты и сопоставить эти реальные изображения лика планеты со старыми сводными. Оказалось, что они не схожи: на прежних отсутствуют не только кольцевые структуры и линеаменты, что мы уже отмечали, но и следы движения ледников, границы ландшафтных зон, ряд вулканов, звездчатые структуры, русла древних рек и высохшие озера.

Так, например, взгляд из космоса выявил неизвестные ранее вулканы в Южной Аравии и Западной Сахаре, в Мексике и на юго-западе США, а также под льдами Земли Элсуорта, у 80° ю. ш. (Антарктида). «С неба» были открыты древние вулканические постройки в Охотско-Чукотском регионе и газообразные выбросы над о. Беннетта (северная часть Восточно-Сибирского моря), зафиксированные четырежды на протяжении 1983–1984 гг.; направленная туда экспедиция обнаружила подводный вулкан.

На космических снимках некоторых районов Скандинавского п-ова и Малой Азии, северо-запада Ирана и Канады, запада США и на востоке Австралии удалось выявить новую форму - звездчатые структуры. По внешнему виду они похожи на трещины в стекле, пробитом пулей. Они установлены также в других областях, например на востоке Западно-Сибирской равнины и в среднем течении Подкаменной Тунгуски, но имеют менее четкие очертания.

Космические снимки позволяют получить объективную информацию об исчезнувшей в наше время гидрографической сети и высохших водоемах. По «небесным» данным на карты нанесены древние долины и дельты Сырдарьи и Амударьи, прежние русла Зеравшана и ряда притоков Амазонки, а также очертания значительных озер, занимавших некогда замкнутые котловины в Восточном Казахстане, Северо-Западном Китае и Южной Монголии. Например, размерами поспорить с Аралом могло подковообразное Джунгарское море: его реликты разбросаны на обширной территории - это Зайсан, Улюнгур, Эби-Нур и ряд мелких джунгарских водоемов. Другим, менее значительным, было Хами-Турфанское озеро, вытянувшееся по параллели на 500 км; оно заполняло обе эти впадины и пространство между ними. Следы древнего озера открыты из космоса и в Западной Сибири, в северной части Кондинской низины, близ 60° с. ш. Оно имело форму вытянутого в широтном направлении овала (300х100 км), что подтвердили полевые исследования.

Наконец, благодаря космической информации уточнены контуры Аральского моря, залива Кара-Богаз-Гол, ряда современных озер в Передней Азии (в частности, Зерайе) и в Южном Тибете (Нгангларинг и Тарок); там же открыты небольшие высокогорные водоемы.

Открытие кольцевых структур

Н

а поверхности Земли давно были известны округлые или овальные тела - вулканы, кальдеры, трубки взрыва, метеоритные воронки, массивы. Но их количество и размеры, не превышавшие первых десятков километров, не производили впечатления. Правда, геологи и географы еще в XIX в. описали довольно крупные образования округлых очертаний (например, Парижский бассейн), а в середине нашего века вихревые структуры подробно изучил китайский геолог Ли Сыгуан , в частности, в центре Малой Азии он выделил одну крупную структуру, а на северо-западе Китая - две. Позднее ряд советских геологов, применив обычные («земные») методы исследований, описали несколько значительных кольцевых форм на Украине и в Казахстане, на Дальнем Востоке и Чукотке.

Однако до начала космической эпохи такие образования считались исключением, хотя уже было доказано, что с ними связаны месторождения металлов, включая золото и серебро. Дешифрирование космических снимков (т. е. выявление круговых или овальных форм, созданных дугообразным или концентрическим строением рельефа, берегов морей и озер, гидросети или растительного покрова, а также круговыми аномалиями рисунка и тональности изображения) сразу же изменило представление о распространенности и габаритах образований, названных кольцевыми структурами. Выяснилось, что вся поверхность суши нашей планеты буквально испещрена «оспинами» и «буграми», имеющими в поперечнике в основном 100–150 км; встречаются и огромные - диаметром в сотни и даже тысячи километров; мелкие (30–50 км), количество которых просто не поддается учету, практически всегда «вложены» в более крупные. Из многообразия известных ныне типов кольцевых структур особенно широко представлены купольные и купольно-кольцевые, т. е. положительные формы рельефа.

Особняком стоят гигантские кольцевые структуры, точнее овоидно-кольцевые системы сложного строения, впервые выявленные геологом Маратом Зиновьевичем Глуховским в 1978 г. по результатам геолого-морфологического анализа. Они получили название нуклеаров и отчетливо проступают на космических снимках всех континентов Земли, за исключением Антарктиды; поперечник некоторых достигает почти 4 тыс. км.

Кольцевые структуры Европы

Н

а Европейском материке М. Глуховский выделил Свеконорвежский (900 км),Здесь и далее в скобках приводятся размеры по максимальной оси. Свекофеннокарельский (1300 км) и Кольско-Лапландский (550 км) нуклеары. Они приурочены к Скандинавскому п-ову и отдешифрированы по космическим снимкам. Прибалтийский (500 км), установленный им же по геолого-геофизическим данным и «с неба», занимает большую часть акватории Балтики. Скифский и Сарматский гиганты, с поперечником 1 тыс. км каждый, выявленные советским геологом Вильямом Артуровичем Бушем по геолого-морфологическим материалам, расположены в Европейской части СССР.

Кроме перечисленных нуклеаров, в пределах континента В. Буш выделяет ряд крупных поднятий; к ним относятся Орденеское (около 600 км) на северо-западе Пиренейского п-ова с четырьмя довольно значительными сателлитами; Чешское (около 400 км), включающее Рудные горы, Чешский Лес, Шумаву и Судеты; Паннонское (более 500 км), осложненное несколькими положительными и отрицательными структурами. На территории нашей страны он же отдешифрировал три овала диаметром от 300 до 400 км (с севера на юг) - Онежский, Молодечненский и Волынский и пять куполов (около 300 км в поперечнике) - Архангельский, Ленинградский, Тихвинский, Рыбинский и Горьковский.

Из отрицательных структур заслуживают упоминания близкие по размерам (200–260 км) Сегурская (юг Испании), Лигуро-Пьемонтская (север Италии) и Парижская, а также более крупная Будапештская (до 400 км) и самая значительная (около 450 км) Мезенская. Южнее ее располагаются две структуры неясного генезиса - Сухонская и Вычегодская (обе до 400 км в поперечнике). В контурах этих крупных образований, а также вне их обнаружены многочисленные формы, диаметры которых обычно меньше 100 км.

Кольцевые структуры Азиатской части СССР

В

пределах Сибири и Дальнего Востока советские геологи отмечают значительное количество кольцевых структур различного «формата». Так, Владимир Васильевич Соловьев , в начале 70-х гг. проведя геолого-морфологический анализ, впервые выделил гигантскую Обскую (1500 км) структуру, захватывающую междуречье нижней Оби и Енисея. Как установлено позднее при дешифровании космических снимков, она является нуклеаром и по периферии осложнена значительно уступающими ей многочисленными образованиями, диаметр которых колеблется от 250 до 400 км. Из них отметим Ханты-Мансийскую и Вартовскую (около 400 км), имеющие концентрическое строение, причем их внешний контур проявляется менее четко, чем внутренний. Восточнее расположен Хета-Оленекский нуклеар (1100 км), занимающий центр и север Среднесибирского плоскогорья; он отдешифрирован по космическим снимкам М. Глуховским. В пределах этой структуры находятся поднятия типа Путорана (300 км) и Анабарского (230 км), выделенные В. Соловьевым, и ряд более мелких.

Южнее, в бассейне Ангары, по геолого-морфологическим материалам В. Соловьев откартировал еще одну крупную форму - Ангарскую (900 км). Он же в бассейне Алдана при анализе топографических карт описал гигантскую морфоструктуру центрального типа, позже получившую название Алдано-Становой (1300 км). В междуречье Вилюя и Лены в 1978 г. М. Глуховский по космическим снимкам выявил Вилюйскую структуру (750 км) с центральным овалом и системой дуг все более увеличивающегося радиуса. Позднее установлено, что все три образования следует причислить к нуклеарам. Контуры еще одного нуклеара - Амурского (1400 км), включающего ряд структур-сателлитов, намечены в основном по космическим снимкам.

Вне пределов перечисленных гигантов обнаружено множество овалов, большей частью приуроченных к северо-востоку материка. Крупнейший из них - « Верхнеиндигирский (500х350 км) с четко вырисовывающимся ядром; Омолонский (400х300 км), открытый В. Соловьевым, имеет концентрическое вихревое строение. Следует отметить и крупную, почти изометричную (500 км) Верхнеянскую структуру, выделенную по морфологическим и геологическим признакам.

Количество куполовидных или кольцевых поднятий диаметром до 200 км, отдешифрированных на обширных пространствах Северо-Востока, составляет несколько сотен. Они четко выражены в рельефе и располагаются в центральных частях или на периферии более значительных образований. Кольцевые структуры до 60 км в поперечнике исчисляются многими сотнями; обычно они круглой формы, реже имеют овальные контуры.

Анализ космических снимков Казахстана и Средней Азии выявил широкое распространение аналогичных образований размером от десятков до нескольких сотен километров. Из складчатых овалов отметим Кокчетавский (около 600 км), ядро которого впервые обнаружено Гюльсем Зигановной Поповой в начале 60-х гг. по геолого-морфологическим признакам; позднее он описан В. Соловьевым. Среди поднятий заслуживают упоминания полукольцевая структура в Каракумах, Северо-Тяньшаньская (350 км), охватывающая наиболее высокогорную часть хребтов Кюнгёй- и Терскей-Ала-Тоо, а также Памирская (около 600 км), частично находящаяся в пределах зарубежной Азии. К отрицательным структурам относятся Северокаспийская (900х600 км) и менее крупные Южнокаспийская и Южноприбалхашская (до 400 км).

Кольцевые структуры зарубежной Азии

Н

а территории зарубежной Азии В. Буш оконтурил восемь нуклеаров. Из них половина - «чисто» азиатских, расположенных на востоке материка: три (Синокорейский, Северокитайский и Индокитайский) имеют поперечник 600–800 км, а Южнокитайский крупнее - 1200 км. Они выявлены по геолого-геофизическим и геолого-морфологическим данным. Остальные представляют собой лишь обломки гигантских нуклеаров, разорванных при распадении материка Гондваны. Аравалийский является азиатской частью Сомалийско-Аравалийского, включающего также два осколка - п-ов Сомали и север Мадагаскара; Аравийско-Нубийский состоит из двух частей, меньшая расположена в Азии. К Дарваро-Мозамбикско-Пилбарскому нуклеару относится только юг п-ова Индостан, а к Индо-Австралийскому - участок, примыкающий к Бенгальскому заливу.

Кольцевые структуры меньшего размера, как и на других материках, накладываются друг на друга и пересекаются. Они характеризуются в основном почти округлой или овальной формой либо имеют незамкнутые контуры. Помимо овала в уже упоминавшемся Памирском поднятии, аналогичные образования дешифрированы в Южном Китае, в междуречье Ганга и Маханади, на севере и юго-востоке п-ова Индостан (Мадрасский овал, более 500 км), а также в Малой Азии (Киршехирский овал, 250 км).

К самым большим поднятиям континента В. Буш относит Хангай-Хэнтойское (до 1000 км) с незамкнутыми контурами. Более скромные по размерам образования того же типа: Шэньсийское (250 км) в Китае, Хамаданское (400 км), отвечающее наиболее приподнятым участкам горной системы Загроса, а также Диярбакырское (350 км), в междуречье верхнего Тигра и Евфрата.

Среди отрицательных структур выделяются три довольно значительные: Сирийская (750 км), Гильмендская (600 км) и Лхасская (500х250 км), полуовальной формы с извилистыми границами. Кроме них, выявлено несколько менее крупных в Малой Азии, Гоби, Монголии и на Аравийском п-ове.

Мелкие образования, представленные куполами или телами гранитных массивов диаметром менее 150 км, по подсчетам В. Буша, составляют более трех четвертей всех оконтуренных кольцевых структур Азии. Они уверенно выявляются во многих регионах материка, в частности на п-ове Индостан.

Кольцевые структуры Африки

В

пределах Африканского континента советский геолог Евгений Дмитриевич Сулиди-Кондратьев в 1983 г. впервые выделил различные по размерам и происхождению кольцевые образования. К крупнейшим относятся семь нуклеаров: Западноафриканский, имеющий форму овала (3600х3000 км), Аравийско-Нубийский (2200 км), захватывающий часть территории Аравии; Центральноафриканский (2800 км), занимающий почти весь бассейн р. Конго; ТанзанийскийПриоритет в выделении этой гигантской структуры принадлежит советскому геологу Олегу Борисовичу Гинтову (1978), проанализировавшему геолого-морфологические материалы. (1400х850 км); Сомалийско-Аравалийский (1700 км) - примерно половина его находится в Индостане; Южноафриканский (2400 км); Дарваро-Мозамбикско-Пилбарский (1500 км), разорванный на четыре «куска», разместившихся на трех материках (Африка, Азия и Австралия), а также на о. Мадагаскар.

Кроме перечисленных гигантов, на Африканском континенте установлено множество положительных кольцевых структур меньшего диаметра, отнесенных к типу складчатых овалов. Из них самый значительный Габонский (1100 км), внутри которого размещаются два крупных купола - Северо-Габонский (около 500 км) и Шайю (300–350 км). Ахаггарский овал, имеющий поперечник более 1000 км, содержит пять куполов-сателлитов диаметром 300–400 км каждый. Немного уступает ему Северо-Суданский (около 1000 км по большой оси). В Западной Африке, близ атлантического побережья, выявлены три овала поменьше, в том числе Леоно-Либерийский, с нечетко проявляющимся концентрическим строением. В Центральной и Южной Африке отдешифрировано четыре структуры таких же размеров, включая описанный О. Гинтовым овал Зимбабве (с тремя сателлитами диаметром 300 км каждый) и Трансваальский с центральной впадиной.

Структуры типа куполов отдешифрированы не только в контурах овалов, но и за их пределами: на юге материка отмечаются два таких самостоятельных образования: Намаква (250 км) и Капский (200 км). Подавляющее большинство имеет поперечник менее 100 км; купола диаметром от нескольких километров до 20 км в основном соответствуют мелким массивам или вулканам - например Килиманджаро.

К наиболее крупным отрицательным кольцевым структурам относятся Таудени, Конго и Чадская - диаметр любой из них составляет около 1000 км. Менее значительные (450–650 км) впадины приурочены в основном к Северной Африке - Куфра, Алжиро-Ливийская и две к югу от Сахарского Атласа. Приблизительно таких же размеров депрессии выявлены на западе и юге материка, в том числе Калахари (до 600 км в поперечнике).

Кольцевые структуры Северной Америки

А

мериканский геолог Джон Сол в 1978 г. описал самую грандиозную кольцевую структуру Земли - Североамериканскую (3700–3800 км), центр которой приходится на Гудзонов залив. В 1982 г. советский геолог Наталья Валентиновна Макарова отнесла ее к разряду нуклеаров.

В пределах этого гиганта Н. Макарова, кроме «наземных» материалов используя космические снимки, отдешифрировала множество кольцевых.структур-сателлитов различных типов и размеров. Отметим отчетливо выраженный в рельефе овал Слейв (более 500 км), расположенный между Большим Медвежьим и Большим Невольничьим озерами; овал Дубонт (около 350 км), выделенный по рельефу вокруг одноименного озера. Южнее намечены контуры двух крупных (400–500 км) форм - Атабасской и Виннипегской. К п-ову Лабрадор приурочено несколько образований: поднятия Центрально-Лабрадорское (750х550 км) и Унгава (около 500 км), а также две полукольцевые депрессии. Значительная (450 км) структура Уэйджер (по бухте того же названия) расположена у Северного полярного круга; ее северная часть низменная, а южная несколько приподнята. Большое количество куполов и депрессий от 50 до 400 км выделено между овалами и в их контурах; некоторые, наиболее отчетливо выраженные, были отмечены ранее американскими геологами, например горы Адирондак куполовидной формы, восточнее озера Онтарио.

На севере и юге материка Н. Макарова отдешифрировала еще два нуклеара. Северный (1500 км) охватывает весь Канадский Арктический архипелаг, за исключением трех четвертей Баффиновой Земли. В его пределах предположительно оконтурено несколько кольцевых структур, в основном соответствующих островам (например, Виктория, Элсмир) либо полузамкнутым акваториям типа бассейнов Фокс или Кейна. Основная площадь южного, Мексиканского нуклеара (1700–1800 км) приходится на одноименный залив; периферия структуры представлена сравнительно узкой полосой побережья от Флориды до Юкатана.

Колорадский нуклеар (1500х1300 км) на западе окаймлен береговыми хребтами, на востоке Скалистыми горами; центральная его часть является огромным сводом с просевшим ядром и дешифрируется как купол-сателлит, соответствующий Большому Бассейну; в его границах отмечено несколько сравнительно небольших (200–300 км) кольцевых образований.

Вне пределов нуклеаров Н. Макарова выявила ряд крупных форм; часть их хорошо выражена в рельефе, например Южноаляскинская (350 км), оконтуренная дугой Аляскинского хребта, Мичигано-Гуронская (500 км), имеющая почти безукоризненный контур. Другие проявляются лишь на космических снимках - к ним относятся Миссури-Иллинойсская (750 км), границами которой на юге и востоке служат давшие ей название притоки Миссисипи; Канзасская (600 км), на юге срезанная дуговыми нарушениями Уачитской полукольцевой структуры; Огайоская (около 500 км) с опущенной южной и приподнятой северной половинами. Два значительных поднятия отдешифрированы на мексиканской территории: Центральномексиканская (более 600 км), отличающаяся сложным строением, и кольцо Мехико (до 400 км).

Кольцевые структуры Южной Америки

А

нализируя рельеф материка по топокартам и используя, правда, в меньшей мере, чем по другим континентам, космические снимки, советский геолог Яков Григорьевич Кац выделил ряд значительных структур. В первую очередь укажем на гигантский Амазонский нуклеар (3200 км), в пределы которого вошла вся северо-западная часть Южной Америки. Небольшие «обрывки» двух других, тяготеющие к атлантическому побережью, являются частями упомянутых ранее Центральноафриканского и Южноафриканского нуклеаров. Гвианское поднятие (1000–1200 км) отвечает одноименному плоскогорью, хорошо выраженному в рельефе и имеющему концентрическое строение.

К аналогичным, но менее крупным положительным образованиям отнесены Пираньяс (550 км) и Ресифи (500 км), приуроченные к восточному выступу материка. Далеко на юге, близ атлантического побережья, выделены еще два кольцевых поднятия - Уругвайское (600 км) и Буэнос-Айресское (450 км).

Четыре отрицательные кольцевые структуры диаметром от 300 до 550 км каждая отмечены в бассейне Амазонки, в том числе три - в ее долине. Восточнее низовьев этой реки расположена еще одна впадина - Мараньян (более 800 км), а к югу от нее другая - в верховьях р. Сан-Франсиску.

В системе Анд установлен ряд незначительных (10–50 км) форм, соответствующих либо вулканическим постройкам, либо мелким массивам.

Кольцевые структуры Австралии

В

первые кольцевые структуры материка установил советский геолог Анатолий Михайлович Никишин . В рельефе Северо-Западной Австралии четко вырисовывается поднятие, кольцевая форма которого хорошо очерчивается долинами пересыхающих рек Ашбертон и Де-Грей. Этот Пилбарский нуклеар всего лишь часть уже упоминавшегося нами Дарваро-Мозамбикско-Пилбарского. Он имеет четкое концентрическое строение благодаря нескольким «вложенным» овалам, а на юго-востоке осложнен кольцевой структурой Дисаппоинтмент (350 км).

На юго-западе континента выявлен нуклеар Ийлгарн, имеющий яйцевидный контур (1200х800 км). В его пределах обозначены три овала размером 100–300 км по большой оси, включая Остин. Значительная часть самой крупной из австралийских структур такого типа - Индо-Австралийской (около 2400 км) отмечена на севере; примерно треть ее приходится на п-ов Индостан. В пределах этого нуклеара выделено шесть овалов, в том числе Кимберли (400–600 км), с юга ограниченный дугообразными хребтами Дьюрак и Кинг-Леопольд. К центру Южной Австралии приурочен нуклеар Гоулер (около 1200 км), практически не проявляющийся в рельефе. Он осложнен двумя овалами и сравнительно крупной впадиной с наложенной на нее кольцевой структурой диаметром 300 км.

Помимо овалов-сателлитов, на континенте А. Никишин отдешифрировал три самостоятельных образования этого же типа, имеющих поперечник 200–250 км, - два на западе и один на востоке; в рельефе четко вырисовывается лишь полуовал Кеннеди, оконтуренный дугообразными участками русел ряда коротких рек бассейна Индийского океана.

В восточной Австралии по геолого-морфологическим данным выделены две крупные отрицательные кольцевые структуры: Эроманга (800 км), соответствующая Большому Артезианскому Бассейну, рассеченная параллельными долинами нескольких рек, и впадина Муррей (600 км), расположенная южнее и лишь на севере и юге не охваченная возвышенностями. В сердце материка выявлена гигантская структура Масгрейв-Макдоннелл (900 км), ядром которой служат системы одноименных хребтов.

Открытие и изучение линеаментов

Н

а лике Земли - это давно отражено на ее физических картах - ясно видны гигантские прямые или слабо изогнутые линии: ровные контуры значительных по протяженности участков берега некоторых континентов и островов, водоразделов и горных систем, а также речных долин. Такие ориентированные в одном направлении контуры географических объектов американский геолог Уильям Хоббс в 1911 г. назвал линеаментами.Впрочем, еще в 1883 г. Александр Петрович Карпинский описал «зачаточный кряж» длиной 2300 км при максимальной ширине до 300 км, протягивающийся из Польши через Донбасс до Мангышлака. В 1892 г. французский геолог Марсель Бертран заложил основы учения о весьма протяженных линейных структурах, к которым тяготеют значительные формы рельефа, крупные нарушения земной коры, а также ровные побережья морей, проливов, заливов и т. д. Однако лишь в космическую эру они получили «права гражданства», более того - ныне с полным основанием считаются одной из главных особенностей структуры поверхности нашей планеты. На глобальных и региональных космических снимках, выполненных во все времена года и в разных зонах спектра, отчетливо дешифрируется огромное количество «штрихов», отсутствовавших на картах любого масштаба. При детальном изучении этих линий на локальных снимках вплоть до исследования их на местности («в поле») - выяснилось: их изображение складывается из хорошо выдержанных по простиранию границ ландшафтных зон, всевозможных уступов, цепочек озер и других понижений, линий дренажа поверхностных и подземных вод, ледниковых трогов, линий раздела различных типов почв или растительности. Протяженность наиболее крупных (глобальных) линеаментов достигает 25 тыс. км. ширина - первых сотен километров.

Линеаменты Европы и Азии

Д

о начала космической эпохи были выделены лишь единичные гигантские линеаментные зоны (открывших их ученых мы отметим ниже). Дешифрирование космических снимков и обработка геолого-геофизических материалов дали возможность группе советских геологов во главе с В. Бушем охарактеризовать сеть крупнейших - глобальных и трансконтинентальных - линеаментов, выделив среди них пять групп.

Меридиональные, по В. Бушу, образуют равномерную систему сближающихся от экватора к полюсу линейных структур, расположенных в 600–800 км одна от другой и не отклоняющихся более чем на 15° от меридионального направления. Широтные приурочены в основном к северо-востоку Азии и находятся на расстоянии 800–1000 км друг от друга. К диагональным линеаментам отнесены структуры северо-западного, северо-восточного и дугообразного простирания (представители двух последних групп встречаются сравнительно редко).

К 1983 г. меридиональных линеаментов, или линеаментных зон, длина которых колеблется от 3500 до 18 000 км, по В. Бушу, было выделено 14. Самая западная, открытая в 1925 г. немецким геологом Хансом Штилле и получившая его имя, протягивается от Тронхейма, в Норвегии, на юг через озеро Мьёса, вдоль западного побережья п-ова Ютландия и меридиональную долину р. Рейна, где она выражена особенно отчетливо. Далее к югу по долине р. Роны зона прослеживается через о-ва Корсика и Сардиния на Африканский континент. Протяженность европейского отрезка «линии Штилле» составляет более 3500 км.

Заслуга выделения глобальной линейной Урало-Оманской структуры принадлежит А. Карпинскому: в 1894 г. он описал меридиональные нарушения, проходящие вдоль Уральского хребта и продолжающиеся до низовьев Амударьи. Французский геолог Раймон Фюрон доказал, что они тянутся через Иран далеко к югу - до о. Мадагаскар. По В. Бушу, эта линеаментная зона в виде широкой (более 300 км) полосы прослеживается от Пай-Хоя примерно по меридиану 60° по Уралу, через Каракумы и Иранское нагорье. За Оманским заливом зона отклоняется к югу-западу и достигает западного побережья Мадагаскара; длина ее определена в 15 000 км.

Енисейско-Салуэнский линеамент проходит от Карского моря по долине р. Енисей через стык Алтая и Западного Саяна. Затем он следует в Центральной Азии приблизительно по меридиану 95° в. д. через верховья Янцзы и вдоль сближенных долин Иравади, Салуина и Меконга. В Индийском океане линеамент представлен подводным Восточно-Индийским хребтом; общая длина его 9000 км.

К глобальным структурам В. Буш относит Верхояно-Марианскую (длина 18 000 км). В Ледовитом океане к ней принадлежит подводный хребет Гаккеля, далее она фиксируется на Новосибирских о-вах и через Верхоянское сооружение и хребет Сетте-Дабан прослеживается по Сахалину, Хоккайдо и Хонсю. Южнее линеамент проходит по о-вам Бонин и Марианским и, обойдя с востока о. Новая Гвинея, достигает акватории между Австралией и Новой Зеландией.

К категории наиболее четко дешифрируемых линеаментов принадлежит Чаунско-Олюторский (7500 км). От Чаунской губы он протягивается через весь северо-восток Азии примерно вдоль 170° в. д. до Олюторского п-ова. Здесь линеамент «ныряет» под воду (хребет Ширшова) и далее, почти не меняя направления, фиксируется в виде подводного Императорского хребта.

Группа широтных лииеаментов но количеству (шесть) и длине (7000–9500 км) уступает меридиональным. Самый северный из «широтников» начинается близ Воркуты и, проходя по стыку Полярного Урала и Пай-Хоя, устанавливается на севере Западно-Сибирской равнины и уверенно дешифрируется на плато Путорана. Далее он оконтуривает с юга Анабарское плато, пересекает Верхоянский хребет, а восточнее фиксируется в рельефе в виде кряжа Полоусный и хребта Улахан-Сис. Затем линеамент выявляется на Чукотском п-ове и прослежен на Аляске в виде широтного хребта Брукс; длина его - 7500 км.

Корякско-Ухтинский линеамент (7500 км) начинается от низовья Северной Двины и, пересекая Урал, оконтуривает с севера Сибирские Увалы. Затем он «заставляет» течь широтным курсом Нижнюю Тунгуску и Вилюй, а далеко на востоке проявляется в структурах Корякского нагорья того же направления.

Охотско-Московский линеамент, европейский отрезок которого выявлен советским геологом Дмитрием Михайловичем Трофимовым , начинается у Куршской косы (южное побережье Балтийского моря). Восточнее эта протяженная (9500 км) структура отмечается на Восточно-Европейской равнине широтными отрезками течения Волги и Камы. Не проявляясь на Урале, она проходит по центральной части Западно-Сибирской равнины, «диктует» широтное направление долин Ангары и Алдана, а также северного берега Охотского моря.

Из семи линеаментов северо-западной группы мы охарактеризуем три. Рекорд протяженности (25 000 км) принадлежит ныне Баренцевоморско-Тайваньской структуре, состоящей, по В. Бушу, из ряда параллельных ветвей, кулисообразно сменяющих одна другую. Западная прослежена от Нордкапа до Тимана (этот отрезок выявил X. Штилле). Затем она диагонально пересекает Средний Урал, Центральный Казахстан, всю Центральную и Юго-Восточную Азию и затухает на о. Калимантан. Более отчетливо проявляется восточная ветвь этого линеамента: она отмечена в Печорской низменности и на Западно-Сибирской равнине, выявлена в западной части Гоби и пустыне Алашань. Затем она достигает о. Тайвань и продолжается по дну Тихого океана.

Красноморско-Боденский линеамент (9000 км) берет начало на о. Ирландия и, проходя по Европейскому материку через Вогезы к Боденскому озеру, упирается в дугу Альп, где не проявляется. Снова линеамент дешифрируется далее к юго-востоку, в бассейне Савы. Затем он переходит на западное побережье Малой Азии и протягивается вдоль Красного моря в Индийский океан, вероятно, до Сейшельских о-вов.

Эльбско-Загросская структура (10 000 км) возникает у южного берега Исландии, по Фарерско-Исландскому порогу пересекает Атлантику и, возможно. Северное море, появляясь на континенте у основания Ютландского п-ова. Далее линеамент идет вдоль долин Эльбы и Одры, режет Карпаты (здесь он фиксируется в виде четкой зоны разломов) и выходит к Черному морю в низовьях Дуная; этот европейский отрезок структуры выявил X. Штилле. В Малой Азии линеамент дешифрируется в восточной половине Понтийских гор, вдоль хребта Загрос достигает Аравийского моря и протягивается параллельно всему западному берегу п-ова Индостан.

К группе «северо-восточников» принадлежит пять структур длиной от 4500 до 10 000 км. Одна из них, Алтынтагско-Охотская (8500 км) начинается на южном побережье Аравии и в море, возможно, соответствует подводному хребту Меррея. Выйдя на Азиатский материк, она определяет простирание нижних течений Инда и Сатледжа. В Гималаях, дешифрируясь лишь участками, линеамент отмечается в Тибете и четко проявляется в хребте Алтынтаг. Далее он пересекает в северо-восточном направлении пустыню Гоби и подходит к берегу Охотского моря близ Шантарских о-вов.

В группе дугообразных «состоят» четыре линеамента длиной от 3500 до 11000 км. Уже упоминавшаяся линия Карпинского (7500 км) начинается у гор Монтань-Нуар, на юге Франции. Огибая по дуге Альпы и Карпаты, она фиксируется в Свентокшиских горах, в районе Канева, Донецком кряже, Прикаспийской низменности и на п-ове Мангышлак. 3aтем линеамент проходит через Султан-Увайс, у 61° в. д., и прослеживается, по В. Бушу, до Сулеймановых гор.

Пальмиро-Барабинский линеамент (11 000 км), давно известный на отрезке Ливан - долина Куры, на юго-западе переходит в Африку. В Азии он прослежен через Апшерон, северное побережье Аральского моря и озеро Тенгиз в район юго-восточнее озера Чаны. На Среднесибирском плоскогорье он установлен вдоль широтного Московско-Охотского линеамента, а затем через Забайкалье и Приамурье достигает пролива Цугару.

Линеаменты других материков

И

з-за относительно слабой изученности некоторых континентов (например, Южной Америки) и небольшой обеспеченности их территорий космическими снимками выделить сеть линеаментов, такую, как в Европе и Азии, пока не удается. Впрочем, это дело сравнительно близкого будущего. Ныне уверенно можно отметить лишь несколько единичных гигантских линейных структур. Так, на Африканском материке отдешифрировано продолжение меридиональной зоны Средиземное море - озеро Мьёса: от побережья Туниса оно пересекает Сахару на юг и достигает залива Биафра. Длина отрезка более 3500 км.

Атласско-Азовский линеамент, начинаясь на побережье Атлантики, проходит вдоль всей горной системы Атлас и через Сицилию и юг Апеннинского п-ова выходит к нижнему Дунаю. Далее он контролирует северный берег Азовского моря и долину нижнего Дона, заканчиваясь у Волгограда. Длина этой структуры на территории Африки 1500 км (общая протяженность - около 6000 км).

Широтный линеамент Бохадор-Рибат (около 5000 км), выделенный Я. Кацем, начинается у мыса Бохадор, на атлантическом побережье материка. Несколько отклоняясь к северу, он пересекает всю Сахару и достигает Суэцкого залива близ 30° с. ш. Далее, почти не меняя направления, структура протягивается через Аравийский п-ов и Иранское нагорье, заканчиваясь у 64° в. д.

К северо-восточной группе африканских линеаментов относится Леврие-Зоруг (около 3500 км). От бухты Леврие, у 21° с. ш., близ мыса Кап-Блан (ныне Нуадибу) он пересекает Сахару до мыса Зоруг, залив Сидра.

К северо-восточной группе африканских линеаментов относится Леврие-Зоруг (около 3500 км). От бухты Леврие, у 21° с. ш., близ мыса Кап-Блан (ныне Нуадибу) он пересекает Сахару до мыса Зоруг, залив Сидра. В Южной Америке по геолого-морфологическим данным Я. Кац выделил два линеамента - Амазонский (3500 км), контролирующий почти широтную долину Амазонки, и меридиональный Парагвайско-Паранский (2500 км). Их существование подтверждено дешифрированием космических снимков.

К линеаментным структурам, возможно, следует отнести и Долину МГГ в Антарктиде, открытую советскими исследователями.

Космос - океанологам

И

зучение океана из космоса дало возможность впервые «окинуть взглядом» всю акваторию каждого из них, проследить поведение некоторых течений и ледового панциря в Арктике и Антарктике. Дистанционные наблюдения принесли ряд сюрпризов. Так, например, космические снимки с американского спутника, сделанные в течение августа - сентября 1964 г., убедительно показали, что у побережья Антарктиды от Берега Правды до Земли Эндерби постоянные полыньи встречаются значительно чаще, чем отмечала ледовая разведка с самолетов и судов. В начале 70-х гг. в Антарктике, Беринговом и Охотском морях были открыты крупные (до 200 км в поперечнике) ледовые вихри, твердые аналоги обнаруженных в 60-х гг. океанических вихрей.

Американским астронавтам с обитаемой орбитальной станции «Скайлэб» в 1973–1974 гг. удалось обнаружить искривление поверхности Атлантики типа провалов и воронок в акватории Бермудского треугольника. Исследованиями из космоса установлена прямая зависимость облачного покрова планеты от океанических течений (кстати, такая связь выявлена и с горными системами).

Наблюдениями «с небес» доказано, что упоминавшиеся ранее вихри - не единичное, а вполне обычное явление, обусловленное общим круговоротом океанических вод. Это открытие в 1978 г. сделал советский космонавт Владимир Васильевич Коваленок . Подлетая к Тиморскому морю, он четко зафиксировал искажение уровня Индийского океана, имеющее форму холма. Ряд океанологов воспринял эту информацию как ошибочную - ранее ничего подобного никто не отмечал. Вскоре, впрочем, сообщение В. Коваленка подтвердилось: в июле 1979 г. Владимир Афанасьевич Ляхов и Валерий Викторович Рюмин в северо-западной акватории Индийского океана, у 40° с. ш., при совершенно ясной погоде отметили водяную гряду широтного направления длиной не менее 100 км. Это локальное возвышение оказалось сравнительно высоким: тень от него образовала отчетливую зону вдоль северных скатов. Они же наблюдали участок подводного хребта к юго-западу от Гавайских островов. (Аналогичные сообщения поступали и ранее от советских и американских космонавтов, в частности В. Коваленок усмотрел отрезок Срединно-Атлантического хребта.) Впрочем, они все видели не сами подводные поднятия, а их «изображения», созданные планктоном или взвешенными в воде частицами, на расположение которых оказывает воздействие рельеф дна.

В. Ляхов с орбиты засек множество различных по габаритам водяных вихрей; удалось выяснить, что в экваториальной зоне доминируют вихри-антициклоны, а в более высоких широтах - их прямые противоположности.

В самое последнее время (1984) по данным, полученным с искусственных спутников, к югу от о. Шри-Ланка в Индийском океане открыта гигантская впадина - водная поверхность в ее пределах находится на 100 м ниже уровня окружающей акватории. Такие же «чаши» обнаружены близ Австралии и в Атлантике, у побережья Центральной и Южной Америки.

Веб-дизайн © Андрей Ансимов, 2008 - 2014 год

"Использование космических методов при исследовании природных ресурсов."

"Мещанина Никифора Никитина за
крамольные речи о полете на Луну
сослать в поселение Байконур."
Московские губернские ведомости. 1848 год.

ПЛАН.
Введение
Взгляд из космоса
Космос и картография
Геология из космоса
Климат Земли - наблюдение из космоса
Заключение
Литература

К середине пятидесятых годов нашего столетия Сергею Павловичу Королеву стало ясно, что ракетная техника достигла уровня, позволяющего запускать искусственные спутники Земли. Тогда он обратился через президиум Академии наук СССР к ведущим ученым-специалистам в различных областях науки и техники с просьбой высказать свое мнение по такому вопросу: "Какую пользу могли бы принести искусственные спутники Земли?" Ответы были разные: от "Я фантазиями не занимаюсь" до "Не знаю". Некоторые, правда, отметили, что спутники могут изучать космос.
С тех пор прошло чуть больше тридцати лет, а положение изменилось кардинальнейшим образом: главная цель космонавтики сейчас не изучение космоса, а работа в чисто земных целях. Космонавтика стала очень важной и эффективной отраслью народного хозяйства. Спутники приобрели такое количество профессий, что только перечисление их заняло бы несколько страниц. Вот лишь основные направления: всестороннее комплексное изучение Земли, охрана природы и рациональное использование ресурсов, дальняя связь, космическая технология, изучение ближнего и дальнего космоса.
За час полета спутник осматривает 20-40 миллионов квадратных километров поверхности Земли. С космических высот производятся наблюдения за облаками, определяются границы снежного покрова, фиксируется ледовая обстановка на морях и океанах. По спутниковым фотографиям облачности составляются глобальные карты воздушных течений, исследуются процессы зарождения и развития циклонов. По данным космической съемки заблаговременно обнаруживаются тропические циклоны - ураганы и тайфуны, тем самым предупреждается, а следовательно, и уменьшается их разрушительное действие.
Карты температуры поверхности океана и намечаемые по ним районы лова рыбы, карты состояния сельскохозяйственных угодий, сведения о загрязнении атмосферы и океанов - примеры практического применения космической информации бесчисленны.
Космические аппараты дали в руки ученым новый метод видения самых различных явлений природы. Появилась новая точка зрения для изучения Земли.

Взгляд из космоса дает исследователю широкую глобальную картину явления в целом, выясняет его истинную величину, устраняет ненужные затемняющие детали. Здесь основной недостаток космической съемки - ее крупномасштабность - превращается в достоинство. Мелкие детали не различаются спутниковой аппаратурой, они "исчезают" на снимке. В исследуемом явлении в атмосфере, в океане, на земной поверхности - выявляется главное.
До последнего времени крупномасштабные физические карты мира, континентов, отдельных государств или крупных регионов создавались путем сведения и преобразования материалов топокарт крупных и средних масштабов, основанных на данных аэросъемочных и наземных топографо-геодезических работ. Такое обобщение контуров зависит от действующих инструкций и приемов картосоставления, а также от ряда чисто субъективных факторов. Благодаря региональным и глобальным космическим снимкам автоматически удалось получить новые объективные физические карты и сопоставить эти реальные изображения лика планеты со старыми сводными. Оказалось, что они не схожи: на прежних отсутствуют не только кольцевые структуры, но и следы движения ледников, границы ландшафтных зон, ряд вулканов, звездчатые структуры, русла древних рек и высохшие озера.
Так, например, взгляд из космоса выявил неизвестные ранее вулканы в Южной Аравии и Западной Сахаре, в Мексике и на юго-западе США, а также под льдами Земли Элсуорта, у 80 ю.ш. /Антарктида/. "С неба" были открыты древние вулканические постройки в Охотско-Чукотском регионе и газообразные выбросы над о.Беннета /северная часть Восточносибирского моря/, зафиксированные четырежды на протяжении 1983-1984 г.г.: направленная туда экспедиция обнаружила подводный вулкан.
Космические снимки позволяют получить объективную информацию об исчезнувшей в наше время гидрографической сети и высохших водоемах. По "небесным" данным на карты нанесены древние долины и дельты Сырдарьи и Амударьи, ряда притоков Амазонки, а так же очертания значительных озер, занимавших некогда замкнутые котловины в Восточном Казахстане, Северо-Западном Китае и Южной Монголии.

Немалое число "старых" наук обрело новые силы, получив эту новую "точку" изучения явлений природы. И что интересно: уход, удаление от объекта наблюдения на сотни километров позволил увидеть истинную сущность природных процессов, выявить их новые свойства.
Количество открытий в науках о Земле, связанных с появлением космонавтики, огромно, эти открытия имеют глобальный характер. Недавно, например, на спутнике были размещены радиотеплокационные приборы, которые принесли на Землю сведения о радиоизлучении ее поверхности. И вот оказалось, что если геологи, географы, почвоведы будут знать электрические свойства песка, глины, различных почв и грунтов, то они смогут по спутниковым данным увидеть картину состояния земной поверхности. Геологи смогут получить сведения о выходах полезных ископаемых, почвоведы получат данные о влажности почвы, о состоянии посевов. И это в масштабах всей планеты!
В конце 1950-х годов в учебниках географии, в разделе о запасах полезных ископаемых в Советском Союзе, говорилось о нефтяных богатствах Азербайджана, Северного Кавказа, о "втором Баку" - Татарии. Здесь же указывалось,что за Уральским хребтом нефть есть только на острове Сахалин. В эти же годы в Сибирь с берегов Волги был протянут тысячекилометровый нефтепровод. Тогда еще и не предполагали, что в наши дни нефтепромыслы Тюмени станут главной базой страны по добыче нефти и газа и будут давать более трехсот миллионов тонн "черного золота". Нефть непрерывным потоком идет отсюда в промышленные районы европейской части нашей Родины.
В непролазных болотах и топях Западной Сибири долгие годы геологические экспедиции упорно искали залежи нефти и газа. Геологи бурили сотни пробных скважин в различных районах Приобья в надежде обнаружить нефтеносные горизонты. Поиски только в одной Тюменской области, площадь которой составляет один миллион триста шестьдесят три тысячи квадратных километров и равна сорока пяти Бельгиям, было нелегким делом.
И вот в 1960 году близ поселка Шаим Ханты-Мансийского автономного округа наконец наткнулись на первый перспективный пласт. Забил долгожданный нефтяной фонтан!

Но даже этот первый крупный успех геологов только приоткрыл глубоко сокрытые тайны кладовых природы. Для того чтобы получить достаточно полное представление о залежах, сказать о возможности промышленной нефтедобычи, обнаружить, известные сейчас месторождения, потребовались еще многие годы работы разведчиков недр...
Но пришло время космонавтики...
Тридцать минут работы советского спутника "Метеор-Природа", семь снимков из космоса и... полная картина состояния огромной поверхности столь труднодоступной территории - космическая фотография всей Западной Сибири готова!
На этом снимке отсутствуют живописные детали ландшафта, на нем не видны холмы, низины, рощи, болота, поселки...
Снимок со спутника в единый момент времени объединяет обширные территории, позволяет выявить крупные черты строения Земли, он обладает свойством территориального обобщения. Снимок чрезвычайно напоминает геологическую карту. Он приоткрыл нам структуру планеты, строение земной коры.
Затем на космические фотографии были нанесены известные сейчас месторождения нефти и газа этого района. И что же? Стало ясно, что все эти от стоящие друг от друга на сотни километров нефтеносные пласты размещаются в строго определенных районах: они расположены в местах вертикальных сдвигов и изломов земной коры.
Так определялись области, перспективные на нефть и газ. Поисковые партии, направленные в эти места, обнаружили новые, неизвестные ранее залежи нефти и газа, подтвердили прогнозы, сделанные с помощью космической техники.
Снимок с орбиты практически помог выяснить богатства недр этого района.
Условие частого, многократного общения для улучшения хорошего знакомства с нашей планетой предоставляет нам космонавтика. За одни сутки искусственный спутник много раз совершает кругосветное космическое путешествие, при этом число витков вокруг Земли зависит от высоты его орбиты.
Спутнику открываются картины состояния планеты в их чередовании. Явления природы предстают при этом в их развитии, в динамике. Последовательно брошенные взгляды из космоса на один и тот же район планеты позволяют определить сущность многих земных явлений. Ученым становится ясным суточный и сезонный ход изменения ритмических процессов в природе. Появляется возможность фиксировать состояние облачных систем, перенос воздушных масс в атмосфере, исследовать земную поверхность, морские течения, определять состояние ледового покрова.
Все четырнадцать морей, омывающих территорию бывшего Советского Союза, в различной степени замерзают на некоторый период. Кратчайший путь из Европу в Японию, Канаду и США лежит, как известно, вокруг нашей страны, через Северный морской путь. Увы, путь этот через арктические моря закрыт льдами в течении почти всего года. Мощные атомные ледоколы прокладывают дорогу караванам судов. Растет поток грузов в районы Дальнего Востока и Крайнего Севера. Все больше и больше вовлекаются эти районы в экономику нашей страны. Продлеваются сроки навигации...
Ледовая обстановка на море быстро меняется. Под действием ветров и течений, приливов и отливов в море возникают пространства, свободные ото льда, ими можно воспользоваться для проводки судов. Однако определить с капитанского мостика оптимальный, самый удобный курс во льдах - задача не простая. Прямой путь из одной точки в другую не всегда является самым быстрым и самым коротким.
Оперативные карты, передаваемые российскими метеорологическими спутниками Земли, дают подробную картину ледовой ситуации, сообщают о сплоченности льда. Радиолокационные спутниковые измерения несут информацию и о структуре ледяного покрова. Морские льды, оказывается, совсем неодинаковы по своей толщине. Космические приборы позволяют выбирать слабые льды, наиболее подходящие для ледокольной проводки маршруты. Северное управление Государственного комитета РФ по метеорологии и контролю природной среды уже несколько лет составляет рекомендации для проводки судов в арктических морях. На первом этапе не все доверяли метеослужбе... Так, сомалийское судно "Дана" в конце мая 1969 года приняло решение следовать напрямик через сплошные льды от Архангельска до открытой воды. Оно затратило на переход десять суток. Суда, следовавшие рекомендованным курсом, преодолели этот путь менее чем за двое суток!
Спутниковые наблюдения - взгляд из космоса - продлили сроки навигации.
В "доспутниковую" эпоху для приема телепередач на больших расстояниях приходилось через каждую сотню километров сооружать ретрансляторы. Спутники обеспечивают уверенный прием на расстояниях в тысячи и десятки тысяч километров. Не все телезрители в наших отдаленных северных районах знают, что телевизионное изображение из Москвы к ним передается через специальный спутник, "неподвижно висящий" над Индийским океаном на высоте 36 тысяч километров.
С помощью спутников решена казавшаяся неразрешимой проблема одновременного комплексного изучения процессов на суше, в океанах, атмосфере и даже в глубинах Земли. Снята с повестки дня проблема составления крупномасштабных карт всего земного шара. Диапазон открытий с помощью спутников - от вихревых структур на суше до неизвестных ранее, затопленных ныне океаном древних пирамид.

ЛИТЕРАТУРА:
1. Космическая география. Полиг.исследования. Берестовский И.Ф. Окорокова Н.А. и т.д. Издательство МГУ 1988г.
2. Космос открывает тайны Земли Сборник С-П Гидрометеоиздат 1993г.
3. Очерки по истории географических открытий Магидович И.П. Магидович В.И. Москва "Просвещение" 1986г.

Фотографические снимки Земли из космоса начали получать с исследовательских ракет еще до запуска искусственных спутников Земли (ИСЗ). Съемка Земли производилась с высот 100-150 км. Снимки были сильно перспективны и имели изображение горизонта. Вместе с тем программы съемок уже включали опыты по выбору оптимальных параметров космических фотографических систем.

Уже на первых космических снимках были хорошо видны горные цепи, выходы коренных пород, долины и русла рек, снежный покров и лесные массивы.

Съемки с ракет не потеряли своего значения и с запуском ИСЗ. И в настоящее время ученые Беларуси используют снимки, полученные при съемках с ракет. Эти снимки ценны не только своей информацией, но и тем, что они дают серии разномасштабных снимков на одну и ту же территорию.

Космические исследования, начатые в шестидесятых годах прошлого столетия, велись и ведутся с такой интенсивностью, что позволили накопить богатый фонд космических снимков (КС).

Большое, если не сказать – огромное, количество оперативных и метеорологических спутников, пилотируемых космических кораблей и орбитальных станций несли и несут научную вахту. Многие их этих космических объектов были или в настоящее время оснащены съемочной аппаратурой. Полученные и получаемые в них снимки чрезвычайно разнообразны в зависимости от выбора регистрируемых характеристик, технологии получения снимков и передачи их на Землю, масштаба съемки, вида и высоты орбиты и т.п.

Космические снимки выполняются в трех основных съемочных диапазонах: видимом и ближнем инфракрасном (световом) диапазоне, инфракрасном тепловом и радиодиапазоне.

Наиболее значительна первая группа – в видимом и ближнем инфракрасном диапазоне, она подразделяется по способам получения и передачи информации на Землю на три подгруппы: фотографические, телевизионные и сканерные, фототелевизионные снимки. Многообразие снимков по группам, более или менее равноценных по содержанию и объему передаваемой информации и качеству изображения, расширяет возможности использования снимков в тех или иных областях географических исследований.

Геологические исследования – одна из областей, где космические снимки находят наиболее активное применение. Уже первые снимки с космических кораблей нашли широкое использование в исследовании стратиграфии и литолого-петрографических свойств пород; структурно-тектонического изучения территории; поисков месторождений полезных ископаемых; изучения геотермальных зон и вулканизме.

Одно из важных достоинств космических снимков – возможность увидеть новые черты строения территории, незаметные на снимках крупного масштаба – относится прежде всего к изучению крупных геологических структур, фильтрация мелких деталей в результате «оптической генерализации» изображения создает возможность пространственной увязки разрозненных фрагментов крупных геологических образований в единое целое.

Небольшое количество сведений, получаемых при дешифрировании космических снимков, относится именно к области структурной геологии. Хорошо выделяются пликативные структуры и разрывные нарушения разных порядков.

Особенно хорошо отражаются линейные разрывные нарушения, как со смещением, так и без смещения смежных блоков. В платформенных областях они выражаются слабыми перепадами рельефа, искривлениями речных русел и эрозионных форм; в горно-складчатых – дешифрируются благодаря сдвигам горных пород различного литологического состава.

Пликативные нарушения – складчатые структуры, сложные антиклинории, кольцевые структуры – также хорошо дешифрируются на космических снимках.

Космические изображения открывают принципиально новые возможности для познания глубинного строения литосферы, позволяя выявлять по совокупности признаков структуры разных глубин и сопоставлять их между собой. Это направление использования космических снимков приобретает большое значение в связи с поисками скрытых месторождений полезных ископаемых и задачами выявления глубинных сейсмогенных структур.

На космических снимках рельеф не находит достаточно полного прямого отражения; стереоскопически по стереопарам воспринимаются лишь формы предгорного и горного рельефа с амплитудами в несколько десятков-сотен метров. Однако хорошая передача различных индикаторов рельефа, главным образом почвенно-растительного покрова, позволяет изучать рельеф в морфолого-морфометрическом и генетическом отношениях.

Различные генетические типы рельефа имеют свои особенности изображения на КС, свои дешифровочные признаки и индикаторы дешифрирования. Так, например, флювиальный рельеф находит яркое отражение на КС в видимом диапазоне более темным фоном, чем окружающая местность, четко прослеживаются и пролювиальные конусы выноса временных водотоков.

КС позволяют изучать и древние флювиальные формы, например, древние эрозионные притоки и дельты.

На снимках четко отражаются не только отдельные долины, но и вся система эрозионного расчленения, хотя выделения отдельных балок и оврагов удается лишь на снимках наиболее крупного масштаба. В целом же эрозионная сеть выявляется с большой полнотой. По полноте отображения эрозионной сети КС масштаба 1:2 000 000 сопоставимы с топографическими картами масштаба 1:200 000 и 1:100 000.

КС современного и древнего эолового рельефа позволяют изучать особенности образования и эволюции различных форм рельефа, выражающиеся в их рисунке, и выявлять зависимость ориентировки форм от режима ветров. В то же время снимки засвидетельствовали несовершенство изображения песков на картах многих районов мира и необходимость привлечения КС при составлении карт пустынных районов. Кроме того работы показали, что КС могут быть использованы при изучении не только открытых, но и закрытых территорий.

На КС хорошо отображаются карстовые и просадочно-суффозионные формы рельефа, а на крупномасштабных снимках горных территорий различаются даже отдельные обвально-осыпные конусы выноса, делювиальные шлейфы. На КС распознаются некоторые формы ледникового рельефа: троговые долины с их параллельными линиями «плечей» на склонах, конечные морены, перегораживающие крупные долины, ледниковые озера. Часто отражается древний конечно-моренный рельеф. Хорошо на КС отображается береговая форма с характерной резкостью береговых линий абразионного берега и плавными линиями – аккумулятивного.

Тщательный геоморфологический анализ КС показывает целесообразность привлечения их для геоморфологического картографирования в средних масштабах. Снимки масштаба 1:2 000 000 могут служить хорошей основой для проведения полевых работ и рисовки геоморфологических контуров, т.е. составления карты в масштабе 1:1 000 000 и мельче.

КС полезны и для составления других карт рельефа, например, карт густоты расчленения рельефа, карт орографических линий и точек. При составлении последних по снимкам уточняются узлы схождения хребтов (узловые точки), разделения характерных линий первого и последующего порядков и вся сеть расчленения горных районов, границы раздела горных и равнинных территорий и т.п.

КС, сделанные при низком положении солнца, дающие пластическую картину рельефа благодаря светотеневой мозаике, могут быть использованы при изготовлении гипсометрических карт.

Заключая теоретическую часть дисциплины «Геоморфология и геология», необходимо напомнить студентам слова академика, профессора Санкт-Петербургского университета И.Лемана: «Геодезист, рисующий рельеф и не знающий геоморфологии, подобен хирургу, делающему операции и не знающему анатомии».

Вопросы для самопроверки

1. На какие дисциплины делится геоморфология?

2. Какие элементы формы и типов рельефа Вы знаете?

3. Расскажите о классификации рельефа по генезису.

4. Расскажите о классификации форм рельефа по их количественным характеристикам.

5. Дайте общую характеристику типов рельефа.

6. Какие типы равнин по происхождению Вы знаете?

7. Опишите холмисто-моренный рельеф.

8. Опишите долинно-балочный рельеф.

9. Опишите горный рельеф.

10. Опишите структурный рельеф.

11. Опишите карстовый рельеф.

12. Опишите вулканический рельеф.

13. Опишите эоловый рельеф.

14. Какие летательные аппараты используются при космических съемках?

15. В каких съемочных диапазонах выполняются космические снимки?

16. Что дает многообразие использования съемочных диапазонов при космической съемке и что это за диапазон?

17. Каковы результаты использования космических снимков в геологических исследованиях?

18. Каковы результаты использования космических снимков в геоморфологических исследованиях?

Райд Юлия

В реферате отражена история исследования Земли из космоса, опысывается опыт применения искусственных спутников для исследования природных ресурсов Земли.

Скачать:

Предварительный просмотр:

Муниципальное бюджетное общеобразовательное учреждение

основная общеобразовательная школа №15

муниципального образования Успенский район

Райд Юлия Александровна

8 класс, 30.06.1997г.

Руководитель:

Старикова Татьяна Васильевна

Тел. 8861067251

Факс: 886104067226

2012 г.

I. Введение

История исследования Земли из космоса

II. Применение искусственных спутников для исследования природных ресурсов Земли:

1. Картография

2. Сельское хозяйство

3. Лесные пожары

4. Океанография

5. Рыболовство

6. Ледовая разведка

7. Нефтяные загрязнения

8. Загрязнение воздуха

III. Заключение. Выводы.

IV. Используемая литература:

Аннотация

В ряду разнообразных космических технологий можно выделить несколько блоков. Это - создание ракетно-космических систем и изготовление бортовой аппаратуры для них; телекоммуникационные (связь, телевидение и т. д.) и навигационные технологии (точное определение координат всевозможных наземных объектов); а еще - дистанционное зондирование Земли (ДЗЗ) - съемки нашей планеты со спутников, находящихся на околоземных орбитах.Если в первые годы развития практической космонавтики основное внимание уделялось созданию и совершенствованию ракетно-транспортных систем (в том числе и для решения военных задач), то в настоящее время, как свидетельствует, в частности, зарубежная аналитика, на первое место по прибыльности выходит блок исследований Земли из космоса. Их результаты используются в самых разных отраслях экономики. Только из космоса можно одновременно собрать глобальную информацию о состоянии атмосферы и океанов, сельском хозяйстве и геологии, о результатах деятельности человека, непрерывно изменяющей условия жизни на Земле (увы, не всегда в лучшую сторону!).

Сотрудниками лаборатории климатических исследований отдела исследований Земли из космоса ИКИ РАН накоплена и постоянно пополняется база данных спутникового мониторинга Земли, полученных в рамках программы DMSP (Defence Meteorological Satellite Program) с радиометрическими приборами на борту.
DMSP - это программа долговременного мониторинга Земли, поставляющая оперативную глобальную метеорологическую, океанографическую и солнечно-геофизическую информацию. Спутники наблюдения особенно эффективны для исследования природных ресурсов, которые меняются и возобновляются со временем.

I. История исследования Земли из космоса

Человек впервые оценил роль спутников для контроля за состоянием сельскохозяйственных угодий, лесов и исследования других природных ресурсов Земли лишь спустя несколько лет после наступления космической эры. Начало было положено в 1960 г., когда с помощью метеорологических спутников были получены подобные карте очертания земного шара, лежащего под облаками. Эти первые черно-белые телевизионные изображения давали весьма слабое представление о деятельности человека, и тем не менее на одном из них были отмечены слабые пятна на снегу в северной Канаде, которые оказались следами расчистки лесов.

В мае 1963 г. американский астронавт во время полета на корабле «Меркурий» поразил наземный персонал сообщением о том, что он видит дороги, строения и даже дым из труб. Наземная служба управления приняла это за галлюцинации! Последующие полеты в космос подтвердили наблюдения Купера. На цветных снимках, сделанных астронавтами, были зафиксированы изменения в городской застройке и прогресс в сооружении новых дорог в течение шестимесячного интервала между полетами, были доставлены из космоса четкие изображения полей пшеницы. На некоторых космических снимках можно было выделить места выпадения дождя накануне вечером, причем не по виду мокрой земли, а по различным цветовым оттенкам, связанным с «развитием локонов» растительности. Вскоре были разработаны новые технические средства, позволявшие повысить качество наблюдений, были использованы достижения в области военных исследований по расширению возможностей обзора с разведывательных самолетов. Информация извлекалась из многоспектральных изображений в видимом и инфракрасном (ИК) областях спектра, что давало возможность различать незначительные изменения ИК-излучения на Земле, не воспринимаемые глазом человека, но содержащие важную информацию.

Аппаратура наблюдения была двух основных типов: камеры, заряженные пленкой, чувствительной только к ИК-излучению, и радиометры, представляющие собой специальные радиоприемники, настроенные только на длины волн ИК-диапазона. Например, на первых ИК-фотографиях, полученных с исследовательских самолетов, можно было различать поля с нормально развивающимися и пораженными болезнями сельскохозяйственными культурами. Участки здоровых культур имели на фотоснимках ярко-розовый или красно-белый цвет, а пораженных культур - сине-черный цвет. При этом начало заболевания зачастую удавалось обнаружить раньше, чем фермеру на земле. Многоспектральные датчики, широко используемые в настоящее время на спутниках наблюдения, основаны на едином принципе: объекты и явления на земной поверхности в общем случае можно распознать по энергии излучения, которое они испускают или отражают. Спектральная характеристика растительности иная, чем горной породы, почвы или воды. Изображения представляются в цифровой форме и передаются на параболические антенны наземных приемных станций, где они записываются на магнитофонную ленту.

II. Применение искусственных спутников для исследования природных ресурсов Земли

1. Картография

Одной из первых областей применения изображений земной поверхности, полученных в соответствии с программой исследования природных ресурсов, была картография. В доспутниковую эпоху карты многих областей, даже в развитых районах мира, были составлены неточно. Изображения, полученные с помощью спутников позволили скорректировать и обновить некоторые существующие карты масштабом 1:250 000 и менее. Свежая информация позволила выявить развитие городов со времени выпуска последних карт, изменения дорог и железнодорожных путей.

Изображения со спутников также были использованы для построения подробных карт, необходимых при строительстве дорог, прокладке железнодорожных путей и ирригационных каналов. Появилась возможность составлять карты подводного рельефа, например коралловых рифов, представляющих потенциальную опасность для мореплавания. Основным фактором снижения стоимости картографирования является высокая скорость космической съемки по сравнению с другими методами

2. Сельское хозяйство

Используя полученные со спутника, исследователи могут идентифицировать отдельные культуры на полях. Среди различаемых культур злаки, кукуруза, соевые бобы, сорго, овес, травы (четыре вида), салат, горчица, томаты, морковь и лук. Ученые различают влажные засеянные поля и голую землю на больших площадях. Такие возможности позволяют осуществить глобальное наблюдение производства продуктов питания, которое поможет человечеству избежать опасности недостатка продовольствия. Исследователи также сосредоточили внимание на возможностях достижения лучшего использования ресурсов сельскохозяйственных культур и леса. Благодаря регулярным наблюдениям со спутников можно установить наилучшие сроки посева и жатвы, обеспечивающие максимальный урожай, путем контроля состояния почвы и содержания влаги; в период роста можно провести инвентаризацию культур и заблаговременно оповестить о засухе, наводнениях и эрозии.

Подобного рода сельскохозяйственное инспектирование позволило бы провести инвентаризацию на территории тропиков, потенциально пригодной для земледелия после расчистки, и получить информацию о плодородных и засушливых районах, которые можно сделать плодородными посредством ирригации. С истема наблюдения за естественными угодьями из космоса позволила установить наилучшие сроки выгона крупного рогатого скота на пастбища.

3. Лесные пожары

Использование информации со спутников выявило ее неоспоримые преимущества при оценке объема строевого леса на обширных территориях любой страны. Стало возможным управлять процессом вырубки леса и при необходимости давать рекомендации по изменению контуров района вырубки с точки зрения наилучшей сохранности леса.

Благодаря изображениям со спутников стало также возможным быстро оценивать границы лесных пожаров. При обзоре территории Канады было зарегистрировано 42 очага огня в северной части одной из провинций, что позволило оценить масштабы опасности

4. Океанография

Кроме фотографирования океанов различные спутниковые системы позволяют получать информацию непосредственно с моря. Автоматические океанские буи могут измерять местные температуры воздуха и поверхности воды, температуру, давление и содержание соли на глубине, высоту волн и скорость поверхностных течений. Эта информация, переданная по команде на спутник, записывается и ретранслируется на одну из наземных станций для оперативного распространения.В настоящее время можно получать информацию о состоянии моря непосредственно со спутника методами микроволновой радиолокации (обратное рассеяние).

5. Рыболовство

Рыбаки Тихого океана используют информацию со спутников по расположению тепловых границ в океане, у которых обычно скопляются лососевые рыбы и тунец благодаря высокому содержанию корма в воде. Благодаря спутникам, поставляющим информацию о постоянно меняющемся пути течений Гольфстрим, рыбаки использовали её для выбора рациональных маршрутов. Что касается глубоководных наблюдений, то современные чувствительные приборы спутников способны «видеть» при чистой воде на глубине до 20 м. В Карибском море это, например, позволило составить карту ранее неизвестных мелей. Проводятся исследования океанов с борта станций, а также со спутников, производящих измерения электромагнитного излучения морской поверхности в видимом, инфракрасном и микроволновом диапазонах.

Эти приборы предоставят информацию о
1) прибрежных загрязнениях,
2) сохранении и использовании рыбных запасов,
3) прокладывании маршрутов судов с учетом океанских течений,
4) учете силового воздействия волн при проектировании сооружений в открытом море и электростанций, использующих энергию волн,
5) картировании полярных шапок, температур океана и ветров с целью лучшего предсказания изменений климата и погоды.

6. Ледовая разведка

Использование спутников для целей обзора облегчило задачу прокладывания курса морских судов. При эксплуатации советского атомного ледокола «Сибирь» была использована информация с четырех типов спутников для составления наиболее безопасных и экономичных путей в северных морях. В одном из таких плаваний ледокол прошел путь от Мурманска до Берингова пролива. Получаемая с навигационного спутника «Космос-1000» информация использовалась в вычислительной машине корабля для определения точного местоположения. Со спутников «Метеор» поступали изображения облачного покрова и прогнозы снежной и ледовой обстановки, что позволило выбирать наилучший курс. С помощью спутника «Молния» поддерживалась регулярная связь корабля с базой.

Навигация судов в холодных морях полностью зависит от знания свойств, распределения, разнообразия и поведения льда и айсбергов. Для составления прогнозов необходима информация о температурах воздуха и моря, выпадении осадков, ветрах и течениях. Сведения о толщине льда на озерах и реках, а также о ледовой обстановке на море можно получить со спутников с помощью инфракрасных датчиков в условиях отсутствия облачности. Пассивная микроволновая радиометрия, по-видимому, станет основой всепогодных систем, а фотографирование с высоким разрешением - средством контроля состояния побережья и прибрежных вод. Одно из наиболее впечатляющих изображений гигантского айсберга было получено с борта спутника во время его полета над Антарктидой 31 января 1977 г. По форме похожий на ботинок, а по размерам близкий к острову Роде, айсберг кажется покоящимся в заливе, но в действительности он находится в открытой воде и временно сел на мель севернее о-ва Джеймса Росса.

7. Нефтяные загрязнения

Капитан танкера, который считает возможным отмывать резервуары в прибрежных водах, в будущем, вероятно, вступит в борьбу со спутниками, которые пристально наблюдают за его антиобщественной деятельностью. В отличие от плохой видимости нефтяных пятен с самолетов, обзор с которых в любом случае ограничен узкими полосами океана из-за малой высоты, эти пятна эффективно выявляются спутниками в глобальном масштабе, за исключением районов с устойчивой низкой облачностью. Для этих целей спутниковые датчики измеряют потоки солнечного света, отраженного от поверхности океана. Излучение пролитой нефти резко отличается от излучения обычной океанской воды в близком к ультрафиолетовому диапазоне длин волн и близком к красному диапазону. Поляризация в отраженном свете от нефтяных пятен также указывает на резкое отличие.

Можно не только различать легкие и тяжелые нефтяные фракции в одном пятне (легкие имеют более светлый оттенок), но и оценивать объем нефти на основе повторных наблюдений; знание типа и качества нефти поможет определить его месторождение.

Многоспектральное развертывающее устройство (МРУ) такое устройство давало четыре синхронных изображения в различных диапазонах длин волн: полоса 4 (зеленая) - 0,5-0,6 мкм; полоса 5 (нижняя красная) - 0,6-0,7 мкм; полоса 6 (верхняя красная/нижняя инфракрасная) - 0,7-0,8 мкм; полоса 7 (инфракрасная) - 0,8-1,1 мкм. На спутнике «Лэндсат-3» устройс В полосе 7 наилучшим образом воспринимается распределение суши и воды; в полосе 5 - топографические особенности; в полосе 4 качественно различимы глубина и мутность стоячей воды; в полосе 6 наилучшим образом воспринимаются тональные контрасты, отражающие характер использования земли, а также в максимальной степени различаются суша и вода

8. Загрязнение воздуха

С изменениями циркуляции в атмосфере (и соответственно метеорологическими наблюдениями со спутников) тесно связана проблема загрязнения воздуха. Ежегодно выбросы промышленных предприятий, выхлопы автомобилей и другие источники образуют сотни миллионов тонн токсичных газов. Облака смога над Лос-Анджелесом и другими городами отчетливо видны на фотографиях, полученных из космоса.

Удивительное заключается в том, что, несмотря на ежегодные выделения огромных масс окиси углерода, стабильного роста ее концентрации не происходит. Следовательно, должен существовать некий природный механизм для удаления образующегося газа.

Глобальное картирование областей атмосферы с высокой, низкой и средней концентрацией газа осуществляется корреляционным интерферометром - оптическим прибором, способным обнаруживать незначительные количества газообразных компонентов. Предполагается, что благодаря монотонному сканированию в течение длительных периодов времени прибор позволит выявить механизм изменения состава газа.

Пока этот механизм не познан, невозможно предсказать, возрастет ли в будущем концентрация окиси углерода и если возрастет, то насколько.

Вызывает также опасение повсеместное возрастание количества двуокиси углерода в атмосфере из-за глобальных масштабов сжигания ископаемых топлив, это производит эффект накрывания Земли все более толстым одеялом, которое продолжает пропускать солнечный свет, но снижает отражение теплового излучения обратно в космос и, таким образом, способствует накоплению тепла у поверхности. Если экстраполировать современные темпы сжигания ископаемых топлив, то к 2025 г. температура Земли теоретически вполне может повыситься на 5,5°С. Это не может не вызывать беспокойства, поскольку повышение температуры даже на доли градуса приводит к изменениям климата. Самые плодородные земли могут превратиться в пустыни, а бесплодные районы стать источниками производства сельскохозяйственных культур.Вопреки ожиданиям не все результаты исследований удручают. Например, некоторые из них свидетельствуют о том, что окись углерода инициирует сложную совокупность химических реакций, которые могут привести к образованию животворного озона в нижних слоях атмосферы, а точнее в тропосфере на высотах 10-15 км.

Одной из наиболее важных областей исследований с помощью спутников является часть стратосферы, содержащая слой озона, который предохраняет Землю и ее обитателей от пагубного действия ультрафиолетового излучения Солнца. Стратосфера, простирающаяся от верхней границы облаков до высоты около 50 км, содержит также слой пылеобразных частиц и мелких жидких капель (аэрозолей), который находится ниже зоны максимальной концентрации озона. Реактивные самолеты являются постоянным источником поступления аэрозолей и газов непосредственно в атмосферу; даже фторуглеводороды, используемые как рабочий газ в аэрозольных распылителях, в конце концов оказываются там.

Таким образом, важно то, что ученые постоянно следят за самыми различными воздействиями загрязняющих веществ на атмосферу в глобальном масштабе, и в этом деле ключ к решению проблем помогают найти спутники

III. Заключение. Выводы

К огда потребовалось по-новому взглянуть на нашу планету с точки зрения проблем, связанных с истощением природных ресурсов, увеличением численности населения и загрязнением окружающей среды, ученые нашли выход в создании спутников для исследования природных ресурсов Земли. Только из космоса можно одновременно собрать глобальную информацию о состоянии атмосферы и океанов, сельском хозяйстве и геологии, о результатах деятельности человека, непрерывно изменяющей условия жизни на Земле (увы, не всегда в лучшую сторону!).

Спутники наблюдения особенно эффективны для исследования природных ресурсов, которые меняются и возобновляются со временем, таких, как возделываемая земля, леса, реки, прибрежная зона, подвергаемая эрозии, снег и зоны затопления.

Значение исследований природных ресурсов Земли получило широкое признание. Страны начали разрабатывать спутники для решения аналогичных задач, что положило начало постоянно действующей системе. накоплен значительный опыт исследований, результаты которых способствуют решению задач по экологии, геологии, развитию сельского хозяйства и других отраслей. Долгосрочной целью этого проекта является инвентаризация невозобновляемых и медленно возобновляемых ресурсов, таких, как минералы и ископаемые топлива, водные запасы, наблюдение за состоянием сельского хозяйства и атмосферы. Программа ориентирована на возможность опознавать, прогнозировать и в ряде случаев контролировать некоторые процессы, относящиеся к океанографии, климатологии, эрозии почвы и загрязнению воды, а также следить за потенциально опасными природными явлениями, такими, как наводнения, засуха, штормы, землетрясения и извержения вулканов

Сейчас в мировой космической деятельности, как правило, ориентируются не столько на отдельные национальные спутники, сколько на их группировки. Перспектива исследования Земли из космоса заключается в расширении и развитии международного сотрудничества.

Используемая литература:

1. Железняков. Советская космонавтика, 1998г.

2. Журнал «Коммерсант- Власть», №№ от10 и 17. 04. 2001г.

3. Использование материалов из сети «Интернет»


Космические методы исследования почв в последнее время достаточно часто применяются для оценки общего состояния грунта. С повышением количества спутников на орбите стало возможным выполнять различные снимки и использовать их в дальнейшем для определенных целей.

Как проводится исследование

Космические методы исследования почв используются в том случае, когда необходимо провести оценку больших участков и собрать полный комплекс информации. За счет применения передового оборудования удается получить максимально точные и детализированные снимки, тщательно изучить состояние пород и составить определенные карты.

Основной недостаток – космические методы исследования почв позволяют получить только общую информацию. Для более детализированного изучения потребуется воспользоваться другими методиками и провести оценку на месте.

Но данное направление имеет и ряд преимуществ. Удается собрать информацию о всех проблемных областях, определить масштабные изменения, которые могут сказаться на экологии или дальнейшем использовании почв для различных целей. Данные методики будут актуальны в случае изучения огромных участков, если нет других вариантов для сбора информации.

Чтобы воспользоваться космическими методами исследования почв, потребуется обращаться в специализированные органы, которые имеют доступ к орбитальным аппаратам. Поэтому данный способ применяется геологами и различными исследовательскими центрами для изучения состояния отдельных территорий в нашей стране.

Как провести изучение почвы?

Если вам потребовалось провести исследование непосредственно на месте и необходимы максимально точные параметры, то стоит обратиться в АНО «Центр экологических экспертиз».

Наши сотрудники готовы принять заявку от клиента и приступить к ее исполнению. Все этапы осуществляется в максимально короткие сроки, подготавливается официальное заключение. Документы соответствуют полному перечню требований и могут свободно использоваться вами в дальнейшем.

Преимущества компании:

  • Невысокие цены на услуги.
  • Небольшие сроки выполнения исследований.
  • Индивидуальный подход к каждому заказу, тщательно подбираются методики и оборудование для анализов.
  • Фирма располагает собственной лабораторией, которая оснащена передовым оборудованием. Происходит постоянное обновление техники для повышения качества услуг.