Свой стиль

Загрязнение воздуха. Влияние вредных ядовитых веществ, дымов и газов на древесные растения Ядовитые удушающие газы

Проблема пагубного влияния на лесные и зеленые насаждения (особенно хвойные) промышленных выбросов газов и дымов стала сейчас одной из важнейших в защите лесов.

Из ядовитых веществ, находящихся в почве и влияющих на растения, следует отметить природный (светильный) газ, серную кислоту и др. Природный газ, действуя на корневые системы растений, вызывает у них ненормальное развитие корней, замедление роста растения. Этот газ убивает находящиеся в почве семена древесных пород. Пахучие элементы газа легко поглощаются частицами почвы и долго удерживаются ими. Наиболее чувствительны к газу лиственные породы (тополь, вяз, ясень, клен), хвойные менее чувствительны.

Серная кислота вызывает ожог корней сеянцев: первое время после протравливания почва (в питомниках) с поверхности подсыхает и в связи с этим повышается концентрация кислоты в почве.

Находящиеся в атмосфере вредные газы, зола, сажа, а также твердые минеральные частицы оказывают различное влияние на жизнедеятельность растений. От пыли, содержащей в себе вредные вещества, хвоя растений начинает буреть, желтеть, увядать. Частицы угольной пыли почти не приносят вреда, так же как уличная и цементная пыль. Сажа, не вызывая засыхания листьев и хвои во время летней жары, является, однако, одним из элементов, мешающих росту хвойных растений в парках больших городов.

В настоящее время большое количество пыли поступает от промышленных предприятий. Большую роль в ее поглощении играет лес,

К серьезным последствиям и усыханию приводят повреждения дымом пицундской сосны в Грузии.

В сосново-еловых насаждениях Скандинавии, расположенных в прибрежных районах морей, довольно часто наблюдается пожелтение хвои сосен. Последнее связано с повышенной влажностью воздуха и содержанием высоких концентраций испарений солей в атмосфере.

Аналогично влияют на сосны и ели, расположенные вдоль автомагистралей, испарения хлоридных солей, используемых в зимний период для очищения дорог от снега и льда.

В результате промышленных выбросов в атмосферу на землю вместе с осадками в виде снега и дождя выпадает большое количество соединений азота и серы. «Кислотные дожди» действуют в качестве растворителей на содержащийся в почве алюминий. В результате соединения этого металла выпадают в озера, реки и заражают грунтовые воды, а повышенное содержание соединений алюминия в воде и пище вредит растениям, животным и людям.

Наиболее распространенными газами, загрязняющими атмосферу и сопровождающими те или иные производственные процессы, являются окись углерода, окислы азота, углекислый и сернистый газы, хлористый водород, сернистый ангидрид; менее распространены фтор и фтористый водород. К числу вредных для растений веществ относятся также серная кислота, фтористые соединения в виде пыли и газообразных веществ.

Окислы азота в концентрации более 2 мг/м 3 вызывают сильное поражение хвои (покраснение кончиков хвои).

Кислотные осадки (или кислые дожди) на 60% обязаны своим происхождением двуокиси серы и на 40% - окислам азота. Они отрицательно влияют на поверхность хвои, препятствуют дыханию и газообмену, отравляют растения в результате проникновения кислотных соединений в хвою и ветви, снижают интенсивность фотосинтеза и всхожесть семян. Наиболее уязвимой для кислотных дождей является белая сосна, а из лиственных - пушистая береза и осинообразный тополь.

Интересные исследования действия кислого дождя (SO 2) иа молодой прирост сосны Аллепо были выполнены в Греции. В течение одного вегетационного сезона однолетние сеянцы сосны Аллепо орошали кислотными осадками с pH 3,1-3,5 (.в контроле pH 5,1). К концу вте. рого вегетационного сезона сеянцы были обработаны тем же раствором (pH 3,3). Сосенки имели высоту 22,6 см, на 8,2% меньше, чем в контроле. Общее содержание серы в иглах сосенок, обработанных «кислым дождем», равнялось 0,13%, в контроле 0,12%. В конечном итоге «кислый дождь» действовал отрицательно на образование термальных ночек, растворял и выщелачивал из почвы значительные количества карбоната кальция.

Под действием серы в количестве 20-30 мг/м 3 в течение 10 ч никаких изменений в вегетативных органах растений т. е. происходит, при 50 мг/м 3 они уже заметны, а при 100 мг/м 3 вегетативные органы отмирают. Содержание сернистого газа в хвое ели не поврежденных газом деревьев достигает 0,23% от абсолютно сухого веса, а в поврежденных 0,74%. Если количество сернистого газа в воздухе достигает 260 мг/м 3 , хвойные породы погибают в течение нескольких часов.

С увеличением влажности происходит повышение концентрации вредных дымов и газов, которая часто может достигать токсических величин, способных вызвать не только невидимые глазом хронические повреждения, но и острые отравления, непосредственно приводящие к гибели растения.

В засушливые годы сернистый ангидрид приносит растениям меньший вред, чем во влажные. Сернистый ангидрид более опасен в присутствии водяных паров и поверхностно-активной пыли, особенно сажи, когда он окисляется до серного ангидрида и образует серную кислоту. Это согласуется с меньшей поражаемостью растений в сухую погоду. Токсичность сернистых газов в той или иной мере также повышается, если в них присутствуют окись углерода, примеси альдегидов и особенно озонидов. Сильно повышает токсичность сернистых газов присутствие в них окислов азота.

Газоустойчивость древесных пород различна. Весьма чувствительны к задымлению сосна, ель. Из лиственных пород малочувствительны ольха, дуб, лох, ильм, берест, клен ясенелистный. Наиболее газоустойчивы тополевые: тополь канадский и бальзамический. В основном засухоустойчивые породы являются и газоустойчивыми.

Кислые газы вызывают на растениях ожоги. Это связано с проникновением газов внутрь тканей листьев, что происходит главным образом через устьица.

Н. П. Красинский различает 3 вида газоустойчивости: биологическую, морфолого-анатомическую и физиологическую. Первая связана со способностью растения быстро восстанавливать поврежденные газами органы растений (листья, побеги). Вторая в основе имеет особенности морфолого-анатомического строения растений, ограничивающие газообмен, а поэтому и затрудняющие поступление газа в ткани листьев.

Физиологическая газоустойчивость связана со способностью растений противостоять вредному действию газов вследствие своих внутренних свойств и особенностей физиологических процессов, а также химического и физико-химического состояния клеточной среды.

Ю. З. Кулагин термин «газоустойчивость» предложил заменить «дымоустойчивость» и выделил ее разные формы на клеточно-тканевом, организменном и популяционно-ценотическом уровнях.

На ускорение процесса усыхания лесов под влиянием задымления в зоне промышленных предприятий влияет: 1) неправильное планирование рубок (ширина и направление лесосек назначаются без учета влияния дымовых газов); 2) бессистемные санрубки (на больших площадях).

Интенсивнее процесс усыхания идет весной и летом (зимой отсутствует), начинается усыхание с вершин. Смешанные насаждения более газоустойчивы, чем чистые, естественные леса устойчивее искусственных, высокополнотные - устойчивее низкополнотных.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Любое нежелательное изменение состава земной атмосферы в результате поступления в нее различных газов, водяного пара и твердых частиц (под воздействием природных процессов или в результате деятельности человека).

Примерно 10% загрязнителей попадают в атмосферу вследствие таких природных процессов, как, например, вулканические извержения, которые сопровождаются выбросами в атмосферу пепла, распыленных кислот, в том числе серной, и множества ядовитых газов. Кроме того, основными источниками серы в атмосфере служат брызги морской воды и разлагающиеся растительные остатки. Также следует отметить лесные пожары, в результате которых образуются плотные клубы дыма, обволакивающие значительные площади, и пыльные бури. Деревья и кустарники выделяют много летучих органических соединений (ЛОС), образующих голубую дымку, которая закрывает бльшую часть гор Блу-Ридж в США (в переводе «голубой хребет»). Присутствующие в воздухе микроорганизмы (пыльца, плесневые грибы, бактерии, вирусы) вызывают у многих людей приступы аллергии и инфекционные заболевания.

Остальные 90% загрязнителей имеют антропогенное происхождение. Основными их источниками являются: сжигание ископаемого топлива на электростанциях (выбросы дыма) и в двигателях автомобилей; производственные процессы, не связанные с сжиганием топлива, но приводящие к запылению атмосферы, например вследствие эрозии почв, добычи угля открытым способом, взрывных работ и утечки ЛОС через клапаны, стыки труб на нефтеперегонных и химических заводах и из реакторов; хранение твердых отходов; а также разнообразные смешанные источники.

Загрязняющие вещества, попадая в атмосферу, переносятся на большие расстояния от источника, а затем возвращаются на земную поверхность в виде твердых частиц, капель или химических соединений, растворенных в атмосферных осадках.

Химические соединения, источник которых находится на уровне земли, быстро смешиваются с воздухом нижних слоев атмосферы (тропосферы). Они называются первичными загрязняющими веществами. Некоторые из них вступают в химические реакции с другими загрязнителями или с основными компонентами воздуха (кислородом, азотом и водяным паром), образуя вторичные загрязняющие вещества. В результате наблюдаются такие явления, как фотохимический смог, кислотные дожди и образование озона в приземном слое атмосферы. Источником энергии для этих реакций служит солнечная радиация. Вторичные загрязнители – содержащиеся в атмосфере фотохимические окислители и кислоты – представляют главную опасность для здоровья человека и глобальных изменений окружающей среды.

Загрязнение воздуха оказывает вредное воздействие на живые организмы несколькими путями: 1) доставляя аэрозольные частицы и ядовитые газы в дыхательную систему человека и животных и в листья растений; 2) повышая кислотность атмосферных осадков, которая, в свою очередь, влияет на изменение химического состава почв и воды; 3) стимулируя такие химические реакции в атмосфере, которые приводят к увеличению продолжительности облучения живых организмов вредоносными солнечными лучами; 4) изменяя в глобальном масштабе состав и температуру атмосферы и создавая таким образом условия, неблагоприятные для выживания организмов.

Атмосфера, или «воздушный океан», состоит из газов, необходимых для поддержания жизни на Земле. По высоте ее можно разделить на пять слоев, или оболочек, окружающих земной шар: тропосферу, стратосферу, мезосферу, термосферу и экзосферу. Их границы определяются по резким изменениям температуры, обусловленным различиями в поглощении солнечной радиации. С высотой также меняется плотность воздуха. В верхних слоях атмосферы воздух холодный и разреженный, а у поверхности Земли благодаря силе тяжести – более плотный. Загрязнены главным образом два нижних слоя атмосферы.

Серьезную угрозу здоровью и процветанию человечества и других форм жизни представляют две глобальные проблемы окружающей среды, связанные с загрязнением воздуха: аномально высокие значения приходящей к земной поверхности ультрафиолетовой радиации Солнца, обусловленные снижением содержания озона в стратосфере, и изменения климата (глобальное потепление), вызванные поступлением в атмосферу большого количества т.н. парниковых газов.

Обе проблемы тесно взаимосвязаны, так как зависят от поступления в атмосферу практически одних и тех же газов антропогенного происхождения. Например, фторхлорсодержащие хладоны (хлорфторуглеводороды), способствуют разрушению озонового слоя и играют не последнюю роль в возникновении парникового эффекта.

Загрязнение воздуха в помещениях является основной причиной онкологических заболеваний. Главные источники этого загрязнения – радон, продукты неполного сгорания, а также испарение химических веществ.

Даценко И.И. Воздушная среда и здоровье. Львов, 1981

Будыко М.И., Голицын Г.С., Израэль Ю.А. Глобальные климатические катастрофы. М., 1986

Пинигин М.А. Охрана атмосферного воздуха. М., 1989

Безуглая Э.Ю. Чем дышит промышленный город. Л., 1991

Александров Э.Л., Израэль Ю.А., Кароль И.Л., Хргиан Л.Х. Озонный щит Земли и его изменения. СПб, 1992

Климат, погода, экология Москвы. СПб, 1995

Для подготовки данной работы были использованы материалы с сайта

Привычный для нас воздух, которым мы дышим, представляет собой смесь газов: кислорода, азота, углекислого газа и других. Особые газы используются в домашнем хозяйстве и на различных производствах. Из газов делают синтетические материалы. Некоторые типы автомобилей работают на газе.

Некоторые факты

    Газ, который использует человек в быту и на производстве, это природный газ. Природный газ - полезное ископаемое. Он образуется в недрах Земли и представляет смесь различных газов.

Газ, как и огонь, помогает человеку, но в некоторых случаях он становится опасным:

  • если произошла неконтролируемая его утечка;
  • если много газа собралось в закрытом помещении.

В природе существуют разные газы, обладающие разными свойствами: одни газы поднимаются вверх, а другие собираются внизу, у поверхности земли. Одни газы безвредны, другие опасны для жизни. Могут возникнуть ситуации, когда для спасения своей жизни, а также оказания помощи пострадавшему ты должен знать, с каким газом имеешь дело.

На уроках химии в старших классах ты узнаешь все свойства различных газов, а пока познакомимся с ними с точки зрения ОБЖ.

Давай подробнее поговорим об опасных газах, наиболее распространённых в быту.

Угарный газ губит много человеческих жизней при пожарах, а также в банях, дачных и сельских домах при неправильном пользовании печным отоплением. Он чрезвычайно ядовит, а так как не имеет запаха и цвета, не раздражает глаза - его трудно обнаружить. В жилище, в бане источником угарного газа становится неполное сгорание топлива в печах, преждевременное закрытие печной задвижки. Отравление угарным газом - более частая причина гибели людей при пожарах, чем огонь и высокая температура. Этот же газ является причиной гибели в холодное время года людей, греющихся в машине с включённым двигателем. Угарный газ образуется и при неполном сгорании бытового газа. Поэтому плохая вентиляция на кухне и в ванной (с газовой колонкой) также может привести к смерти. Угарный газ поднимается вверх, и, следовательно, в помещении, где скопился этот газ, надо передвигаться ползком.

Помимо угарного газа в выхлопах автомобилей содержится и скапливается вдоль автомагистралей и другой ядовитый газ - оксид азота. Поэтому лучше избегать прогулок по улицам с интенсивным движением и закрывать окна, выходящие на проезжую часть, особенно в часы пик. А также никогда не собирать грибы и ягоды около дорог, по которым часто ездят автомобили!

Ядовитые газы выделяются и при горении синтетических отделочных материалов, ковровых покрытий. Чтобы не отравиться, лучше двигаться низко пригнувшись. Внизу сохраняется больше воздуха.

Следует знать о ядовитом газе, образующемся в грунте - самом верхнем слое земной поверхности, и который может скапливаться в понижениях рельефа местности. Например, на старых свалках, в болотах, в канализационных колодцах, подвалах, шахтах. Этот газ также не имеет вкуса и запаха, он тяжелее воздуха. В таких случаях приближаться к потерпевшему надо в средствах защиты.

Бытовой газ . Он может быть двух видов: магистральный газ, чаще используемый в крупных городах, и сжиженный газ в баллонах, состоящий из смеси двух газов - пропана и бутана. Пропан - легче воздуха и, значит, поднимается вверх; бутан - тяжелее и поэтому при утечке заполняет в первую очередь подвалы и подземные коммуникации.

Бытовой газ не имеет ни цвета, ни запаха. Поэтому в него добавляют сильно пахнущее вещество, придающее ему особый «газовый» запах. Благодаря ему мы можем обнаружить «утечку» газа.

Причины утечки бытового газа:

  • неисправность газовых труб, плит, колонок, баллонов;
  • неправильная установка газового оборудования;
  • слабое крепление резинового шланга между баллоном (трубой) и плитой;
  • неполное закрытие крана газовой плиты;
  • заливание огня газовой горелки выкипающей водой;
  • задувание слабого огня сквозняком.

Результатом утечки газа могут быть взрыв, пожар и отравление людей.

Если ты самостоятельно разогреваешь еду или готовишь, не отходи далеко от газовой плиты и следи за газовой горелкой.

Очень важно обеспечить в помещении, где установлена газовая плита, хорошую вентиляцию. Если нет вытяжной установки, то при длительной работе газовой плиты нужно всегда держать форточку или окно приоткрытыми. При наличии в кухне вентиляционного отверстия необходимо следить за чистотой фильтра, установленного в нём, так как он постепенно забивается пылью и копотью.

Знай, что пламя горящего газа должно быть ровным, голубого цвета. Если же оно красное или жёлтое, а на посуде появился нагар - газ сгорает неполностью. Надо вызвать мастера.

Запомни! При запахе бытового газа в доме или подъезде нельзя пользоваться электричеством: включать свет, звонить в электрозвонок, вызывать лифт, а также спичками и зажигалками. От любой искры может произойти взрыв газа во всём доме. Почувствовав запах газа, быстро открой двери и окна, чтобы сквозняком выдуло скопление ядовитого газа. Перекрой газовую трубу. Всё это нужно делать, задерживая дыхание и прикрывая рот и нос любой тканью. Если причина загазованности неясна и своими силами устранить её не удаётся, то следует быстро поки-нуть опасное место и вызвать аварийную газовую службу по телефону «04».

При отравлении любым газом у человека вначале начинает сильно болеть и кружиться голова, появляется шум в ушах. Затем темнеет в глазах, начинается тошнота. Если это происходит с тобой, нужно побыстрее уйти из данного помещения и сообщить взрослым о своём состоянии и возникшей опасности.

При более сильном отравлении нарушается сознание, появляются мышечная слабость, сонливость. Возможны потеря сознания, судороги и смерть.

Первая помощь пострадавшему от угарного или бытового газа: немедленно вывести (вынести) его на улицу. При слабом дыхании или его остановке следует применить искусственное дыхание. Помогают в подобных случаях растирание тела, прикладывание грелки к ногам, кратковременное вдыхание паров нашатырного спирта. Если у человека признаки сильного отравления, то надо срочно вызвать «Скорую помощь».

Вопросы

  1. Какие ты знаешь опасные газы?
  2. В какой части закрытого помещения скапливается угарный газ? Почему?
  3. Что должен сделать человек, если он почувствовал признаки отравления газом?
  4. В какую службу спасения необходимо обратиться при утечке бытового газа?
  5. Что нельзя делать при утечке бытового газа в квартире или в другом закрытом помещении?
  6. Ситуационная задача.
    • Миша пришёл домой и почувствовал запах газа. Он сразу же пошёл на кухню и включил свет... Правильно ли поступил Миша?
  7. Как помочь человеку, если он отравился бытовым или угарным газом?
  8. Где и при каких условиях в повседневной жизни можно встретиться с угарным газом?

4.1 Газы в грунтах .

Грунты, как известно, обладают пористостью; наличие пор определяет возможность содержания в грунтах газов и воды. В зависимости от того, насколько заполнены поры одним из этих компонентов, грунты будут представлять собой двух- или трехкомпонентную систему. Полностью водонасыщенные грунты рассматриваются как двухкомпонентная система.

Объем пор определяет предельные значения количества воды и газов в грунтах: чем больше поры заполнены водой, тем меньше в них газов, и наоборот. Преобладающий компонент (вода или газ) в очень большой мере определяет свойства грунтов.

Интенсивность газообмена между грунтом и атмосферой зависит от их состава и строения и вызывается диффузным перемешиванием газов, колебаниями температуры и давления, атмосферного воздуха, атмосферными осадками и ветром.

Между атмосферным воздухом и газовой составляющей грунтов различия наиболее велики в количественном содержании диоксида углерода, кислорода и азота. Если в атмосферном воздухе углекислота составляет лишь сотые доли процента (около 0,03 %), то содержание ее в почвах и горных породах возрастает до десятых долей и даже целых процентов, а в почвенном воздухе может достигать почти 10 %. Кислород и азот в толще грунтов содержатся в разных количествах.

Газы в порах грунтов могут находиться в различном состоянии: свободном, адсорбированном и защемленном ,кроме того, в воде, заполняющей поры, газы могут присутствовать в виде мелких пузырьков или быть растворенными в ней.

Адсорбированные и защемленные газы оказывают определенное влияние на свойства грунтов. Количество адсорбированных газов на поверхности грунтовых частиц, удерживаемое молекулярными силами, зависит от минералогического состава грунтов, наличия в них гумуса и других органических веществ и соединений, от степени дисперсности, неоднородности, морфологических параметров частиц грунта и его пористости. В наибольшем количестве адсорбированные газы содержатся в абсолютно сухих грунтах, по мере увлажнения их содержание уменьшается и при влажности 5–10 % становится равным нулю.

При увлажнении, связанном с капиллярным поднятием воды в грунтах, газы из открытых пор вытесняются в атмосферу. При одновременном избыточном увлажнении грунта снизу и сверху в отдельных его участках газы оказываются замкнутыми в порах внутри грунта. Это так называемые «защемленные газы» или «защемленный воздух», часто являющийся характерным для пород поверхностных зон земной коры. Защемленные газы занимают значительные участки в толще грунта или находятся в небольших количествах в тончайших микропорах грунта, что является обычным для пылеватых и глинистых грунтов.

Максимальное количество защемленных газов, в отличие от адсорбированных, формируется в грунтах при какой-то оптимальной для данного грунта влажности. Например, в глинистых грунтах защемленные газы могут занимать до 20–25 % объема пор грунтов.

Адсорбированные и защемленные газы с большим трудом удаляются из грунтов внешним давлением.

Наличие в грунтах адсорбированных и защемленных газов обусловливает многолетнюю осадку насыпей из глинистых грунтов, деформации и разрывы земляных насыпей, уменьшение водопроницаемости грунтов.