Аксессуары

Высокая температура вспышки. ООО «СиБ Контролс

Температурой вспышки называется минимальная температура, при которой пары нефтепродукта образуют с воздухом смесь, способную к кратковременному образованию пламени при внесении в нее внешнего источника воспламенена (пламени, электрической искры и т. п.).

Вспышка представляет собой слабый взрыв, который возможен в строго определенных концентрационных пределах в смеси УВ с воздухом.

Различают верхний и нижний концентрационный предел распространение пламени. Верхний предел характеризуется максимальной концентрацией паров органического вещества в смеси с воздухом, выше которой воспламенение и горение при внесении внешнего источника воспламенения невозможно из-за недостатка кислорода. Нижний предел находится при минимальной концентрации органического вещества в воздухе, ниже которой количество теплоты, выделившееся в месте локального воспламенения, недостаточно для протекания реакции во всем объеме.

Температурой воспламенения называется минимальная температура, при которой пары испытуемого продукт при внесении внешнего источника воспламенения образую устойчивое незатухающее пламя. Температура воспламенения всегда выше температуры вспышки, часто довольно значительно - на несколько десятков градусов.

Температурой самовоспламенения называете минимальная температура, при которой пары нефтепродуктов смеси с воздухом воспламеняются без внешнего источника воспламенения. На этом свойстве нефтепродуктов основана pa6oта дизельных двигателей внутреннего сгорания. Температура самовоспламенения выше температуры вспышки на несколько сот градусов. Температура вспышки керосинов, дизельных топлив, смазочных масел, мазутов и других тяжелых нефтепродуктов характеризует нижний предел взрываемости. Температура вспышки бензинов, давление паров которых при комнатных температуpax значительно, обычно характеризует верхний предел взрываемости. В первом случае определение ведется при нагревании во втором - при охлаждении.

Как всякая условная характеристика, температура вспышки зависит от конструкции прибора и условий определения. Кроме того, на ее значение влияют внешние условия - атмосферное давление и влажность воздуха. Температура вспышки возрастает с увеличением атмосферного давления.



Температура вспышки связана с температурой кипения исследуемого вещества. Для индивидуальных углеводородов эта зависимость по Орманди и Кревину выражается равенством:

Т всп = К· Т кип, (4.23)

где Т всп - температура вспышки, К; К - коэффициент, равный 0,736; Т кип - температура кипения, К.

Температура вспышки - величина неаддитивная. Опытное ее
значение всегда ниже рассчитанного по правилам аддитивности
среднеарифметического значения температур вспышек компо­нентов, входящих в состав смеси. Это объясняется тем, что температура вспышки зависит главным образом от давления пара низкокипящего компонента, а высококипящий компонент слу­жит передатчиком тепла. В качестве примера можно указать, что попадание даже 1 % бензина в смазочное масло снижает температуру вспышки от 200 до 170°С, а 6 % бензина снижают её почти вдвое. .

Существуют два метода определения температуры вспышки- в приборах закрытого и открытого типа. Значения температуры вспышки одного и того же нефтепродукта, определенные в приборах различного типа, заметно различаются. Для высоковязких продуктов это различие достигает 50, для менее вязких 3-8°С. В зависимости от состава топлива значительно изменяются условия его самовоспламенения. С этими условиями, в свою очередь, связаны моторные свойства топлив, в частности, детонационная стойкость.

Оптические свойства

На практике для быстрого определения состава нефтепродуктов, а также для контроля за качеством продуктов при их производстве часто используют такие оптические свойства, как коэффициент (показатель) преломления, молекулярная рефрак­ция и дисперсия. Эти показатели внесены во многие ГОСТы на нефтепродукты и приводятся в справочной литературе.

Показатель преломления - очень важная константа не только для индивидуальных веществ, но и для нефтепродуктов, являющихся сложной смесью различных соединений. Изве­стно, что показатель преломления углеводородов тем меньше, чем больше в них относительное содержание водорода. Показатель преломления циклических соединений больше, чем алифатических. Циклоалканы занимают промежуточное положение между аренами и алканами (гексан 1,3749, циклогексан 1,4262, бензол 1,5011). В гомологических рядах показатель преломления возрастает с удлинением цепи. Наиболее заметные изменения наблюдаются у первых членов гомологического ряда, затем изменения постепенно сглаживаются. Однако имеются исключения из этого правила. Для циклоалканов (циклопентана, циклогексана и циклогептана) и аренов (бензола и его гомологов) наблюдается сначала уменьшение, а затем увеличение показателя преломления с возрастанием длины или числа алкильных заместителей. Например, показатель преломления бензола 1,5011, толуола 1,4969, этилбензола 1,4958, ксилолов 1,4958- 1,5054.

В гомологических рядах углеводородов наблюдается линейная зависимость между плотностью и показателем преломления. Для фракций циклоалканов существует симбатность изменения температуры кипения (молекулярной массы) и показателя преломления; чем выше температура кипения, тем выше показатель преломления. Кроме показателя преломления весьма важными характери­стиками являются некоторые его производные, например, удельная рефракция :

R 1 = (n D - 1)/р == const (формула Гладстона - Даля), (4.24)

R 2 = [(n 2 D - 1) / (n 2 D + 2)]·1/ р == const (формула Лорентц - Лоренца), (4.25)

где р - плотность продукта, измеренная при той же температуре, что и показатель преломления.

Произведение удельной рефракции на молекулярную массу называется молекулярной рефракцией .Молекулярная рефракция обладает аддитивностью для индивидуальных веществ. Кроме того, молекулярная рефракция равна сумме атомных рефракций. На основании большого числа экспериментальных данных было установлено, что удлинение молекулы на одну метиленовую группу (СН 2) вызывает увеличение молекулярной рефракции на 4,6.

Показатель преломления исследуемого вещества зависит от длины волны падающего света. Наибольшее значение показатель преломления имеет для света с меньшей длиной волны и наоборот. Зависимость показателя преломления света от длины его волны для данного вещества характеризуется дисперсией (рассеянием) света.

Температура вспышки - это та, при которой над поверхностью нагреваемого в тигле жидкого горючего вещества кратковременно вспыхивают её пары. Обычно вспышка не переходит в горение, поскольку скорость образования горючих паров при этой температуре меньше скорости их сгорания. Горение пламенем наступает позже, при более высокой температуре, называемой температурой воспламенения (или возгорания).

Этот параметр имеет ключевое значение в технике использования всех видов горючих жидкостей, поскольку позволяет устанавливать правила и границы безопасного обращения с ними, определять чистоту топлива, наличие опасных добавок, выявлять фальсификаты, достоверно рассчитывать режимы работы двигателей и энергетических установок.

Температуру вспышки жидкого топлива измеряют двумя методами - в открытом и закрытом тиглях. Они отличаются тем, что в последнем методе пары не могут улетучиваться в окружающее пространство, и вспышка наступает при менее высокой температуре. Температура вспышки в открытом тигле всегда выше, и эта разность температур растёт с увеличением абсолютного значения параметра.

В нашей стране стандартизованы в ГОСТ 4333-87 два метода определения температуры вспышки в открытом тигле – Кливленда и Бренкена. Другой стандарт - ГОСТ 6356-75 – устанавливает аналогичную методику для закрытого тигля.

Принцип измерения

Исследование проводят на отечественном приборе типа ТВО.

Оба ГОСТа устанавливают следующий порядок измерения температур вспышки.
Нефтепродукты наливают в открытый (или в закрытый) металлический чашеобразный тигель до обозначенной метки на внутренней стенке. Тигель устанавливают в прибор на асбестовую поверхность нагревательного устройства, с помощью штатива закрепляют термометр так, чтобы ртутная головка находилась внутри жидкости на высоте не менее 8 мм от дна тигля в центре круга. Включают нагрев, устанавливают нужную скорость нарастания температуры.

Через каждые 2 ºС над поверхностью жидкости проводят в горизонтальном направлении наконечником газовой горелки с пламенем длиной не более 4 мм. При возникновении кратковременной голубой вспышки паров регистрируют температуру. Это и есть искомая величина. При дальнейшем нагревании жидкости она возгорается красным пламенем. Регистрируют температуру воспламенения.

При исследовании вспышки в закрытом тигле под крышку помещают газовый запальник с постоянным горением. Пары в таком тигле накапливаются быстрее, вспышка происходит раньше.

Некоторые данные по измерению температур вспышек

Сегодня существуют более совершенные, чем ТВО, аппараты для определения температур вспышки. Они отличаются высокой точностью измерений, автоматизацией операций, дружественными интерфейсами, большой производительностью, поэтому существенно облегчают работу операторов в загруженных лабораториях.

Методику открытого тигля используют для исследований веществ с низким давлением летучих паров – минеральных масел, остаточных нефтепродуктов. Анализы в закрытом тигле более применимы для жидкостей с высоколетучими парами. Результаты исследований по обеим методикам могут иметь существенные различия (до двух десятков ºС).

Вещества с температурами вспышки в закрытом тигле ниже 61 ºС относят к легковоспламеняющимся. Они, в свою очередь, подразделяются на особо опасные (Т всп.≤ -18 ºС), опасные (Т всп.от -18 ºС до +23 ºС) и опасные при повышенной температуре (Т всп. от 23 ºС до 61 ºС).

Для дизельного топлива температура вспышки в открытом тигле колеблется в диапазоне от 52 до 96 ºС, для бензина - -43 ºС. Температура самовоспламенения для бензина - 246 ºС, для дизтоплива - 210 ºС. Поскольку последнее не поджигается в камере сгорания ДВС, а самовоспламеняется, становится понятным, почему для него характерны столь высокая по сравнению с бензином температура вспышки и более низкая температура самовоспламенения.

Температура вспышки топлива в открытом тигле является важным информативным параметром жидкого горючего, используемым для определения качества продукта.

Если вам понравилась наша статья и мы как-то смогли ответить на ваши вопросы - то будем очень благодарны за хороший отзыв о нашем сайте!

Владимир Хомутко

Время на чтение: 4 минуты

А А

Какова температура вспышки нефтепродуктов?

Температура вспышки нефтепродуктов (ТВНП) представляет собой такое значение, при котором из вещества, нагреваемого при стандартных условиях, выделяется количество паров, достаточное для образования в окружающем его воздухе горючей смеси, которая вспыхивает при контакте с огнем.

ТВНП и температура кипения нефтепродуктов, характеризующая степень их испаряемости, находятся в тесной взаимосвязи. Другими словами, чем нефтяная фракция легче, тем выше его испаряемость, а значит – ниже этот важный показатель.

К примеру, ТВНП бензиновых нефтяных фракций находится в отрицательном диапазоне значений (вплоть до минус 40 градусов Цельсия). Керосины образуют горючие воздушные смеси в диапазоне от 28-ми до 60-ти градусов, а различные виды дизельного топлива – от 50-ти до 80-ти градусов. Тяжелые масляные фракции вспыхивают в диапазоне от 130-ти до 325-ти °С. Если говорить о самой сырой нефти, то дня различных видов нефтей ТВНП может быть как отрицательной, так и положительной.

Также ТВНП сильно зависит от присутствия в конкретном продукте влаги, присутствие которой её снижает. Поэтому, для точного определения ТВНП в условиях измерительной лаборатории исследуемое вещество предварительно обезвоживают.

В настоящее время используют два основных метода определения ТВНП, имеющих государственные стандарты:

  • в открытом тигле (по ГОСТ-у 4333-87);
  • в закрытом тигле (по ГОСТ-у 6356-75).

Разница в результатах, получаемых этими методами, может составлять от 20-ти до 30-ти градусов. Это связано с тем, что в открытом тигле часть выделяемых продуктом паров улетучивается в атмосферу, поэтому накопление их количества, достаточного для возникновения горючей смеси, происходит несколько дольше, чем при использовании закрытого тигля. Соответственно, ТВНП, полученная с использованием открытого тигля, будет выше, чем при использовании тигля закрытого типа.

В основном открытый тигль используют для определения этого значения у тех нефтяных фракций, которых относятся к высококипящим. К таким продуктам относятся разные виды нефтяных масел и мазутов. ТВНП считается такая, при которой первое синее пламя на поверхности исследуемого вещества появляется – и сразу исчезает.

По значению этого параметра все нефтепродукты делят на две категории:

  • легковоспламеняющиеся;
  • горючие.

К первой категории относят все нефтяные вещества, у которых этот ТВНП составляет меньше 61-го градуса Цельсия при проверке в закрытом тигле, и не большее 66-ти – в открытом. Горючими считаются вещества, у которых ТВНП больше 61-го и 66-ти градусов соответственно методу исследования.

ТВНП является важнейшим показателем, по которому определяется взрывоопасность (другими словами, при каких условиях пары нефтяного вещества образуют с атмосферным воздухом взрывчатую смесь).

Взрываемость имеет два показателя – нижний предел и верхний предел.

Их суть заключается в том, что при концентрации выделяемых продуктом паров в паровоздушной смеси ниже, чем нижний предел, или выше, чем верхний предел – взрыва не будет. В первом случает это связано с тем, что выделяющееся тепло поглощается избытком воздуха, что не позволяет загореться остальным частям горючего. Во втором случае для взрыва в паровоздушной смеси просто недостаточно кислорода.

Другие показатели, важные для нефтепродуктов

К таким показателям относят температуры воспламенения, самовоспламенения и застывания.

Температура воспламенения нефтепродукта

Эта температура нефтепродуктов всегда выше описанной в первой части статьи. Если для определения значения вспышки появления первого пламени с последующим его затуханием, то для этого показателя необходим такой нагрев, при котором вещество будет гореть постоянно. Разница между этими двумя характеристиками при измерении может составлять от 30-ти до 50-ти градусов.

За температуру воспламенения берется минимальная, при которой вспышка вещества приводит не к моментальному затуханию пламени, а к процессу постоянного горения исследуемого продукта.

Если продолжить нагрев исследуемого нефтяного вещества, избегая его контакта с атмосферным воздухом, а при достижении высоких температурных значений создать такой контакт, то вещество способно самопроизвольно загореться. Минимальные показания прибора, при котором это происходит, и являются температурой его самовоспламенения.

Анализатор температуры вспышки по Пенски-Мартенсу PMA 5

Она находится в прямой зависимости от химического состава нефтепродукта. Самые высокие значения этого показателя характерны для углеводородов ароматической группы, за ними идут нафтеновые и парафиновые вещества.

Зависимость проста – чем легче нефтяная фракция, тем выше значение t самовоспламенения. Например, самовоспламенение бензиновых фракции может происходит в диапазоне от 400 до 450 градусов, а у газойлей – от 320-ти до 360-ти.

Знание этого значения очень важно, поскольку самовоспламенение является достаточно частой причиной возникновения пожаров на предприятиях нефтепереработки, когда любое нарушение герметичности в теплообменниках, трубопроводах или в ректификационных колоннах (например, из-за разгерметизации фланцевых соединений) приводит к самовозгоранию.

Следует помнить, что если на изоляционный материал попадает нефтепродукт, его нужно как можно быстрее заменить, так как каталитическое действие продукта способно вызвать самовозгорание при более низких t, чем температура самовоспламенения.

Определение температуры застывания необходимо для обеспечения нормальной транспортировки с помощью трубопроводов, а также при использовании нефтяных производных в условиях сильных морозов (например, в авиации, где использование быстро застывающего топлива невозможно). В этих сферах крайне важна такая характеристика, как подвижность нефтяных продуктов, от которой зависит степень их прокачиваемости.

ТВО-ЛАБ-11 Автоматический аппарат для определения температуры вспышки в открытом тигле

Температурой застывания считается та, при которой вещество, исследуемое в стандартных условиях, теряет свою подвижность.

Снижение подвижности и полная её потеря может объясняться следующими факторами:

Температура вспышки - это температура, при которой нагреваемый в стандартных условиях нефтепродукт выделяет такое количество паров, которое образует с окружающим воздухом горючую смесь, вспыхиваю­щую при поднесении к ней пламени.

Этот показатель тесно увязан с температурой кипения, т.е. с испаря­емостью. Чем легче нефтепродукт, тем лучше он испаряется, тем ниже его температура вспышки. Например, бензиновые фракции имеют отри­цательные температуры вспышки (до -40°С), керосиновые фракции име­ют температуры вспышки в пределах 28-60°С, фракции дизельного топ­лива - 50-80°С, более тяжелые, масляные фракции - 130-325°С. Темпе­ратуры вспышки различных нефтей могут быть как положительными, так и отрицательными.

Наличие влаги в нефтепродуктах приводит к снижению температуры вспышки. Поэтому при определении ее в лабораторных условиях нефте­продукт должен быть освобожден от воды. Существуют два стандартных метода определения температуры вспышки: в открытом (ГОСТ 4333-87) и закрытом (ГОСТ 6356-75) тигле. Разница в определении температуры вспышки между ними составляет 20-30°С. При определении вспышки в открытом тигле часть образовавшихся паров улетает в воздух, и требуе­мое их количество, необходимое для вспышки, накапливается позднее, чем в закрытом тигле.

Поэтому температура вспышки одного и того же нефтепродукта, оп­ределенная в открытом тигле, будет выше, чем в закрытом тигле. Как правило, температуру вспышки в открытом тигле определяют для высококипящих фракций нефти (масла, мазуты). За температуру вспышки принимают ту температуру, при которой на поверхности нефтепродукта появляется и сразу гаснет первое синее пламя. По температуре вспышки судят о взрывоопасных свойствах нефтепродукта, т.е. о возможности об­разования взрывчатых смесей его паров с воздухом. Различают нижний и верхний пределы взрываемости.

Если концентрация паров нефтепродукта в смеси с воздухом ниже нижнего предела, взрыв не произойдет, так как имеющийся избыток воз­духа поглощает выделившееся в точке взрыва тепло и таким образом пре­пятствует возгоранию других частей горючего.

При концентрации паров нефтепродукта в смеси с воздухом выше верхнего предела взрыва не происходит из-за недостатка кислорода в смеси.

Температура воспламенения. При определении температуры вспыш­ки наблюдается явление, когда нефтепродукт вспыхивает и сразу гаснет. Если нефтепродукт нагреть еще выше (на 30-50°С) и снова поднести ис­точник огня к поверхности нефтепродукта, то он не только вспыхнет, но и будет спокойно гореть. Минимальная температура, при которой неф­тепродукт вспыхивает и начинает гореть, называется температурой вос­пламенения.


Температура самовоспламенения . Если нефтепродукт нагреть до вы­сокой температуры без контакта с воздухом, а далее обеспечить такой контакт, то нефтепродукт может воспламениться самопроизвольно.

Минимальная температура, соответствующая этому явлению, назы­вается температурой самовоспламенения. Она зависит от химического состава. Наиболее высокими температурами самовоспламенения обла­дают ароматические углеводороды и богатые ими нефтепродукты, далее следуют нафтены и парафины.

Чем легче нефтепродукт, тем выше его температура самовоспламене­ния. Так, для бензинов она находится в пределах 400-450°С, для газой­лей - 320-360°С.

Самовоспламенение нефтепродуктов часто является причиной по­жаров на заводах. Любая разгерметизация фланцевых соединений в ко­лоннах, теплообменных аппаратах, трубопроводах и т.д. может привести к пожару.

Облитый нефтепродуктом изоляционный материал необходимо уда­лять, поскольку его каталитическое воздействие может вызвать самовосп­ламенение нефтепродукта при значительно более низких температурах.

Температура застывания . При транспортировке нефтепродуктов по тру­бопроводам и применении их в области низких температур в авиации боль­шое значение имеет их подвижность и хорошая прокачиваемость в этих ус­ловиях. Температура, при которой нефтепродукт в стандартных условиях испытаний теряет подвижность, называется температурой застывания.

Потеря подвижности нефтепродукта может происходить за счет двух факторов: или повышения вязкости нефтепродукта, или за счет образо­вания кристаллов парафина и загустевания всей массы нефтепродукта.

ВСПЫШКА И ТЕМПЕРАТУРА ВСПЫШКИ . Горючие вещества, особенно жидкие, обнаруживают в зависимости от условий, в которых они находятся, три раздельных между собой типа сгорания: вспышку , воспламенение и возгорание ; как частный случай вспышки можно рассматривать взрыв . Вспышка представляет собой быстрое, но сравнительно спокойное и кратковременное сгорание смеси паров горючего вещества с кислородом или воздухом, происходящее от местного повышения температуры, которое м. б. вызвано электрической искрой или прикосновением к смеси горячего тела (твердого тела, жидкости, пламени). Явление вспышки - подобно взрыву, но, в отличие от последнего, оно происходит без сильного звука и не оказывает разрушительного действия. От воспламенения вспышка отличается своей кратковременностью. Воспламенение , возникая, как и вспышка, от местного повышения температуры, может длиться затем до исчерпания всего запаса горючего вещества, причем парообразование происходит за счет тепла, выделяющегося при сгорании. В свою очередь, воспламенение отлично от возгорания , поскольку это последнее не требует дополнительного местного повышения температуры.

Все типы сгорания связаны с распространением тепла из участка, где произошло сгорание, в прилежащие области горючей смеси. При вспышке тепловыделение в каждом участке достаточно для поджигания смежного участка уже готовой горючей смеси, но недостаточно для пополнения ее путем испарения новых количеств горючего; поэтому, истратив запас горючих паров, пламя гаснет, и вспышка на этом кончается, пока снова не накопятся горючие пары и не получат местного перегрева. При воспламенении парообразующее вещество бывает доведено до такой температуры, что теплоты от сгорания накопившихся паров оказывается достаточно для восстановления запаса горючей смеси. Начавшееся воспламенение, дойдя до поверхности горючего вещества, становится стационарным, пока горючее вещество не сгорит нацело; но, однако, будучи прекращено, воспламенение уже не возобновляется без приложенного извне местного перегрева. Наконец, при возгорании горючее вещество находится при температуре, достаточной не только для парообразования, но и для вспышки непрерывно образующейся горючей смеси, без дополнительного местного нагрева. В этом последнем случае горение, если бы оно было прекращено, например, пресечением свободного доступа кислорода, возникает самопроизвольно после устранения препятствующей причины: самопроизвольно происшедшая вспышка перейдет далее в воспламенение.

Возможность горения того или другого типа зависит прежде всего от химического состава горючей смеси, т. е. химической природы горючих паров, содержания кислорода в смеси, от содержания посторонних безразличных примесей, как: азот , водяные пары, углекислота, и от содержания примесей, активно противодействующих реакции горения, например, отрицательных катализаторов, глушителей и т. д. А так как все типы процесса горения начинаются со вспышки, то рассмотрение вспышки в ее зависимости от химического состава смеси имеет общее значение для всех случаев. Заранее очевидно, что при данных условиях давления и температуры смесь горючего пара или газа с кислородом (или воздухом) может подвергаться вспышке не в любой пропорции и что очень малое или, наоборот, слишком большое содержание горючего в смеси исключает вспышку. Кроме того, различные горючие пары требуют для своего сгорания различного количества кислорода, и потому «пределы вспышке» смесей из кислорода и горючих паров всегда зависят от рода горючего пара. Способ подсчета этих пределов для химически индивидуальных веществ был указан Торнтоном. Если обозначить через N число атомов кислорода, необходимого для полного сожжения М молекул горючего вещества в газо- или парообразном виде, то, по Торнтону, пределы смесей, сохраняющие способность вспышки, могут быть выражены:

Если в состав смеси входит не чистый кислород, а воздух, то необходимо учесть, что 1 объем кислорода содержится в 5 (точнее, в 4,85) объемах воздуха. Так, например, горение метана можно выразить уравнением:

так что для этого случая М = 1 и N = 4. Отсюда состав верхнего предела для смеси метана с кислородом определяется формулой:

отсюда легко подсчитать, что верхний предел вспышки для смеси метана с воздухом определяется отношением 1:5, т. е. при содержании в смеси 1/6 метана, или 16,7% (опыт дает 14,8%). Для нижнего предела аналогично имеем состав смеси СН 4 (1 объем) + 6 О (3 объема), что отвечает содержанию метана в смеси с воздухом 1/16, или 6,25% (опыт дает 5,6%). Аналогично для пентана, C 6 H 12 , получаем М = 1 и N = 16, откуда для верхнего предела вычисляется 1/21, или 4,75%, пентана в смеси с воздухом (опыт дает 4,5%), для нижнего же 1/76, или 1,35% (опыт дает 1,35%). Так как величины М и N в формулах Торнтона пропорциональны парциальным упругостям пара горючего вещества и кислорода, то, очевидно, вспышка возможна лишь в определенных пределах парциального давления паров, причем пределы ее изменяются с температурой. Очевидно также, что вспышка становится возможной, когда упругость насыщенного пара достигнет известного значения. Зная это значение и зависимость упругости пара от температуры, можно вычислить температуру, при которой возможна вспышка. Исследования Э. Макка, Ч. Э. Бурда и Г. Н. Боргема показали, что для большинства веществ наблюдается при нижнем пределе вспышке достаточно хорошее совпадение температуры вычисленной с температурой непосредственно наблюденной.

Смеси паров также в некоторых случаях подчиняются указанному способу определения температуры, при которой возможна вспышка. Если это - смесь нафтенов С n Н 2 n , то во всех гомологах отношение содержания С к Н одно и то же, так что средний молекулярный вес смеси дает возможность определить число групп СН 2 и, следовательно, количество потребного для сгорания их О. Кроме того, температура вспышки представляет здесь почти линейную функцию молекулярного веса и связанной с ним температурой кипения. Для смеси метановых углеводородов С n Н 2 n+2 (например, газолин) число N тоже вычисляется из среднего молекулярного веса. После вычитания из него 2 (для двух водородных атомов у конца цепи) и деления остатка на 14 (сумма атомных весов группы СН 2) получается число этих групп, отвечающее среднему молекулярному весу смеси. Если это число умножить на 3 и прибавить 1, для двух непринятых раньше во внимание атомов водорода, то получается N. Так, для газолина средний молекулярный вес 107 и поэтому:

С возрастанием давления смеси парциальная упругость горючего пара повышается, а потому повышается и температура вспышки. Увеличение давления на 1 мм повышает температуру вспышки погонов мексиканской нефти на 0,033°, как показал Ломан, исследовавший вспышку на разных высотах (по данным Гольде, работавшего с другими материалами, это изменение составляет 0,036°). Специально для керосина имеется поправочная таблица, позволяющая приводить температуру вспышки, найденную при любом барометрическом давлении, к нормальному. Кроме атмосферного давления, температура вспышки изменяет также влажность воздуха, поскольку парциальная упругость водяного пара понижает давление горючего компонента смеси.

Вспышка испаряющейся жидкости . Вспышка готовой смеси газов или паров представляет случай простейший. Более сложно протекает явление вспышки, когда вспыхивающая смесь возникает непрерывно от испарения тут же находящейся жидкости. Вспышка газовой смеси зависит также от многих условий опыта: увеличение ширины взрывной бюретки, перенесение взрывающей искры сверху вниз, увеличение емкости сосуда, удлинение искрового промежутка и т. д. - все это расширяет пределы возможной вспышки. Кроме того, некоторые, пока еще недостаточно исследованные, примеси могут существенно изменять эти пределы. Вопрос о вспышке тумана из распыленной горючей жидкости исследован Гидером и Вольфом. Нижний предел вспышки оказался тут тем же, что и для смеси с соответственным паром; но скорость распространения взрыва в тумане меньше, а потребление кислорода больше, чем в случае паров. Состояние поверхности жидкости, объем ее, расстояние до зажигающего пламени, быстрота обмена наружного воздуха и образующихся паров, быстрота испарения, а, следовательно, мощность нагревающего жидкость источника тепла, теплопроводность стенок сосуда, теплопроводность и вязкость самой жидкости, потеря сосудом тепла через лучеиспускание и т. д. - все это может значительно изменить наблюдаемую температуру вспышки и помимо факторов, указанных при обсуждении вспышки газовой смеси. Поэтому о вспышке, как о константе, можно говорить только условно, ведя опыт лишь в точно определенных условиях. Для химически индивидуальных веществ Орманди и Кревен установили пропорциональность температур вспышки и кипения (в абсолютных градусах):

где коэффициент k для нижнего предела вспышки равен 0,736, а для верхнего 0,800; Т° кип. должна быть определяема по начальному показанию термометра. Формула Орманди и Кревена до известной степени распространяется также на очень узкие фракции разного рода смесей. Однако для тех горючих жидкостей, с которыми в большинстве случаев приходится иметь дело на практике, т. е. для сложных смесей, простых зависимостей, определяющих температуру вспышки, пока не найдено. Даже двойные смеси не подчиняются в отношении вспышки правилу смешения, и низко вспыхивающий компонент значительно понижает вспышку другого, высоко вспыхивающего, тогда как этот последний мало повышает вспышку первого. Так, например, смесь равных количеств фракций (бензинового и керосинового компонентов) удельного веса 0,774 со вспышкой при 6,5° и удельным весом 0,861 со вспышкой при 130° обладают температурой вспышки не при 68,2°, как следовало бы ожидать по правилу смешения, а при 12°. При 68,2° вспыхивает смесь, содержащая лишь около 5% более легкого компонента, так что эта небольшая примесь понижает температуру вспышки более тяжелого компонента на 61,8°. Впрочем, результат испытания подобных смесей в открытом тигле, где не могут накопляться пары летучего компонента, не так искажается от примесей, особенно если разница вспышек в обоих компонентах значительна. В некоторых случаях такие смеси могут давать двойную вспышку при разных температурах.

Воспламенение . Температура воспламенения превышает температуру вспышки тем значительнее, чем выше сама температура вспышки. Как показали Кюнклер и М. В. Бородулин, при нагревании нефтяных продуктов от вспышки до воспламенения испытуемое вещество теряет около 3% своего веса, причем эта потеря относится к более легким погонам. Поэтому присутствие небольших количеств (не более 3%) легких погонов, существенно искажающее температуру вспышки вещества, не мешает точному измерению температуры воспламенения. Наоборот, присутствие в масле более 10% бензина делает температуру воспламенения неопределенной.

Самовозгорание , или самовоспламенение, смеси горючих паров происходит тогда, когда тепловыделение окисляющейся системы уравнивается с теплопотерей, и потому даже ничтожное ускорение реакции ведет к бурному процессу. Очевидно, граница температурного равновесия изменяется при том же составе смеси в зависимости от массы ее, теплопроводности и теплоиспускающей способности оболочки, содержащей горючую смесь, от температуры окружающей среды, присутствия катализаторов в смеси и целого ряда других условий, так что температура самовозгорания имеет определенное значение лишь при строго определенных условиях. Зависимость температуры самовозгорания от присутствия или отсутствия катализирующей платины доказывается, например, данными Э. Констана и Шлёнфера (табл. 1).

Зависимость температуры самовозгорания от присутствия в смеси кислорода или воздуха показана данными тех же исследователей (табл. 2).

Исследование С. Гвоздева над самовозгоранием различных веществ в кварцевых и железных трубках в атмосфере кислорода и воздуха дало результаты, которые сопоставлены в табл. 3.

В отношении к самовозгоранию опытом установлены некоторые общие положения, а именно: 1) давление понижает температуру самовозгорания; 2) присутствие влаги тоже понижает температуру самовозгорания; 3) в воздухе температура самовозгорания выше, чем в кислороде; 4) температура самовозгорания в открытой трубке выше, чем в закрытом пространстве; 5) температура самовозгорания углеводородов циклогексанового ряда ниже, чем у ароматических, и близка к температуре самовозгорания предельных углеводородов; 6) для ароматических углеводородов температуры самовозгорания в воздухе и кислороде близки между собой; 7) некоторые вещества (скипидар, спирты) дают при последовательном ряде испытаний весьма колеблющиеся значения температуры самовозгорания (особенно скипидар). Особый случай самовозгорания представляют волокнистые материалы (хлопок, начески, шерсть, тряпье), пропитанные маслами; легкость самовозгорания в таких случаях связана с температурой самовозгорания соответственных масел. Явления этого рода имеют столь существенное практическое значение, что разработаны специальные методы и приборы для испытания способности масел к самовозгоранию в присутствии хлопка.

Измерение температур вспышки и воспламенения . Находясь в тесной связи с молекулярным весом и температурой кипения, вспышка и воспламенение косвенно связаны с этими константами и потому характеризуют данное вещество. Им принадлежит еще большее значение на практике, при суждении о степени огнеопасности вещества в данных условиях пользования им и, следовательно, для установления предупредительных мер, - обстоятельство, особенно важное в промышленности (нефтяной, деревоперерабатывающей, спиртовой, лаковой, маслобойной) и вообще во всех случаях, где имеют дело с летучими растворителями.

Необходимость измерять температуры вспышки и воспламенения повела к конструкции многочисленных, нередко дорогих, специальных приборов и к разработке инструкций для работы с ними, причем в отдельных отраслях промышленности, применительно к отдельным классам веществ, даже родственных между собой, построены и стандартизованы различные приборы с различными инструкциями. Не имея под собой рациональных оснований, меняясь от страны к стране, от одной промышленной организации к другой и от одного класса веществ к другому, способы измерения вспышки и воспламенения дают результаты, согласуемые между собой лишь очень приблизительно. Главные типы приборов для измерения температуры вспышки бывают: а) с открытым сосудом, б) с закрытым сосудом.

а) Приборы с открытым сосудом . Измерение температуры вспышки первоначально производилось наливанием испытуемой жидкости на воду, содержащуюся в чашке; эта последняя затем подогревалась. Позднее вспышку в открытом сосуде стали производить гл. обр. в отношении трудно вспыхивающих веществ, например, смазочных масел, газовых каменноугольных смол, различных мастик и т. д. Таковы приборы Маркуссона, Бренкена, Кливленда, Мура, де-Граафа, Круппа, отличающиеся между собой главным образом размерами, формой и материалом тигля, конструкцией обогревающих частей и способом ведения нагрева. Подробности обращения с этими приборами можно найти в специальных руководствах. Следует отметить, что выступание ртутного столбика термометра за пределы тигля и нахождение его в среде с различными в разных местах температурами ведут к необходимости в значительной поправке, возрастающей с возрастанием температуры вспышки или воспламенения, - например, до 10-14°, когда температура вспышки 300°. Истинная температура вспышки вычисляется по формуле:

где θ - непосредственно наблюденная температура вспышки (или воспламенения), n - число градусов части ртутного столбика, находящейся вне испытуемой жидкости, a t" - температура, соответствующая середине выступающей части ртутного столбика; хотя t" м. б. вычислена, но обычно ее измеряют непосредственно, с помощью дополнительного термометра. Для быстрого нахождения этой поправки служит специальная таблица. Особая таблица служит также для поправок на барометрическое давление, особенно важных при определении температуры вспышки легко воспламеняющихся жидкостей (керосин); для последних обычно применяют приборы с закрытым сосудом.

б) Приборы с закрытым сосудом . Из различных приборов этого рода наиболее известны приборы Абеля и Мартенса (оба усовершенствованные Пенским), Эллиота (нью-йоркский), Таг. В СССР и некоторых других странах (Германия, Австрия) употребляется почти исключительно прибор Абеля-Пенского для низкокипящих жидкостей (керосин) и прибор Мартенса-Пенского - для высококипящих жидкостей (масла). Рабочая часть этих приборов состоит из строго нормированного тигля, плотно прикрытого крышкой, в которой через определенные промежутки времени открывают окошечко для введения в тигель маленького пламени. В тигле имеется термометр и мешалка. Обогрев тигля, а в некоторых случаях, наоборот, охлаждение, ведется в строго определенных условиях, при помощи специальных бань. Приборы, принятые в разных странах для испытания керосина, и нормальные температуры вспышки при соответствующих испытаниях сопоставлены в табл. 4.

Показания различных приборов в определении температуры вспышки всегда расходятся между собой, причем определение вспышки в открытом сосуде всегда дает температуру более высокую, чем в закрытом приборе. Обусловливается это тем обстоятельством, что в закрытых приборах пары постепенно накопляются в приборе, тогда как в открытом сосуде они все время диффундируют в окружающую атмосферу. О размерах этих расхождений можно судить на основании данных табл. 5.

Из этой таблицы видно также, что разница между температурой вспышки в закрытом и открытом приборах увеличивается с повышением температуры вспышки, а также, как показывают последние два примера, - с увеличением неоднородности продукта. В связи с этим наличие большой разницы в температуре вспышки для одного и того же вещества при определении его вспышки в открытом и закрытом приборах указывает либо на примесь к тяжелому веществу, например, маслу, какого-либо легкого вещества (бензина, керосина) либо на некоторые дефекты перегонки (разложение с образованием легко летучих продуктов). Таким образом сопоставление температуры вспышки одного и того же вещества в открытом и закрытом приборах может служить для контроля правильности как употребления, так и производства смазочных масел.