Мoдный низ

§ платоновы тела с подробным их описанием. Построение графических примитивов

Правильным многоугольником называется ограниченная прямыми плоская фигура с равными сторонами и равными внутренними углами. Ясно, что таких фигур бесконечно много. Аналогом правильного многоугольника в трехмерном пространстве служит правильный многогранник: пространственная фигура с одинаковыми гранями, имеющими форму правильных многоугольников, и одинаковыми многогранными углами при вершинах. На первый взгляд может показаться, что многогранников также бесконечно много, но на самом деле их, как выразился однажды Льюис Кэррол, "вызывающе мало". Существует лишь пять правильных выпуклых многогранников: правильный тетраэдр, куб, октаэдр, додекаэдр и икосаэдр (рис. 90).

Первое систематическое исследование пяти правильных тел было, по-видимому, предпринято еще в глубокой древности пифагорейцами. Согласно их воззрениям, тетраэдр, куб, октаэдр и икосаэдр лежат в основе традиционных четырех элементов: огня, земли, воздуха и воды. Додекаэр пифагорейцы по непонятным соображениям отождествляли со всей вселенной. Поскольку взгляды пифагорейцев подробно изложены в диалоге Платона "Тимей", правильные многогранники принято называть Платоновыми телами. Красота и удивительные математические свойства пяти правильных тел неоднократно привлекали к себе внимание ученых и после Платона. Анализ Платоновых тел является кульминационным пунктом заключительной книги "Элементов" Евклида. Иоганн Кеплер в юности считал, что расстояния между орбитами шести известных в его время планет можно получить, вписывая в определенном порядке пять правильных тел в орбиту Сатурна. В наши дни математики не приписывают Платоновым телам мистических свойств, а изучают свойства симметрии правильных многогранников методами теории групп. Платоновы тела играют заметную роль и в занимательной математике. Рассмотрим, хотя бы бегло, несколько связанных с ними задач.

Существуют четыре различных способа, как разрезать запечатанный конверт и сложить из него тетраэдр. Вот простейший из них. На обеих сторонах конверта у одного и того же края) начертим равносторонний треугольник (рис. 91) и разрежем конверт по пунктирной прямой. Правая его половина нам не нужна, а левую мы перегнем по сторонам нарисованного треугольника (на обеих сторонах конверта) и совместим точки А и В. Тетраэдр готов!

Головоломка, изображенная на рис. 92, также связана с тетраэдром. Развертку, изображенную на рис. 92 слева, можно вырезать из пластика или плотной бумаги. Сделайте две такие развертки. (На чертеже все пунктирные линии, кроме одной, которая заметно длиннее других, имеют одинаковую длину.) Сложим развертку, перегнув ее по указанным на чертеже линиям. Грани, пересекающиеся между собой вдоль ребер, показанных на чертеже сплошной линией, склеим липкой лентой. В результате у нас получится геометрическое тело, показанное на рис. 92 справа. Из двух таких тел нужно попытаться сложить тетраэдр. Один мой знакомый математик любит приставать к своим друзьям с довольно плоской шуткой. Он собирает из двух разверток две модельки, составляет из них тетраэдр и ставит его на стол, а третью развертку незаметно зажимает в руке. Затем ударом руки он расплющивает тетраэдр и в то же время кладет на стол третью развертку. Вполне очевидно, что его друзьям никак не удается собрать тетраэдр из трех блоков.

Из различных занимательных задач, связанных с кубом, я упомяну лишь головоломку с вычислением полного сопротивления электрической цепи, образованной ребрами проволочного куба, и тот удивительный факт, что куб может проходить через отверстие в меньшем кубе. В самом деле, стоит вам взять куб так, чтобы одна из его вершин была направлена прямо на вас, а ребра образовали правильный шестиугольник, как вы увидите, что в сечении, перпендикулярном лучу зрения, есть достаточно места для квадратного отверстия, которое чуть больше грани самого куба. В электрической головоломке речь идет о цепи, изображенной на рис. 93. Сопротивление каждого ребра куба равно одному ому. Чему равно сопротивление всей цепи, если ток течет от А к В? Инженеры-электрики извели немало бумаги, пытаясь решить эту задачу, хотя при надлежащем подходе найти ее решение совсем несложно.

Все пять Платоновых тел использовались в качестве игральных костей. После куба наибольшую популярность приобрели игральные кости в форме октаэдра. Как сделать такую кость, показано на рис. 94. Начертив и вырезав полоску и перенумеровав грани, ее перегибают вдоль ребер, а "открытые" ребра склеивают прозрачной лентой. Получается миниатюрный октаэдр. Сумма очков на противоположных гранях октаэдрической игральной кости, как и у обычной кубической, равна семи. При желании с помощью новой кости вы можете показать забавный фокус с отгадыванием задуманного числа. Попросите кого-нибудь загадать любое число от 0 до 7. Положите октаэдр на стол так, чтобы загадавший мог видеть только грани с цифрами 1, 3, 5 и 7, и спросите, не видит ли он задуманного им числа. Если он отвечает утвердительно, вы запоминаете про себя число 1. Затем вы переворачиваете октаэдр так, чтобы загадавшему были видны грани с цифрами 2, 3, 6 и 7, и снова задаете тот же вопрос. На этот раз утвердительный ответ означает, что вы должны запомнить число 2. В третий (и последний раз) вы повторяете свой вопрос, повернув октаэдр так, чтобы загадавший мог видеть грани с цифрами 4, 5, 6 и 7. Утвердительный ответ в этом случае оценивается числом 4. Сложив оценки всех трех ответов, вы получите задуманное вашим приятелем число. Этот фокус без труда объяснит всякий, кто знаком с двоичной системой счисления. Чтобы легче было отыскать нужные положения октаэдра, как-нибудь пометьте три вершины, которые должны быть обращены к вам, когда вы стоите лицом к зрителю (задумавшему число).

Существуют и другие не менее интересные способы нумерации граней октаэдрической игральной кости. Например, числа от 1 до 8 можно расположить так, что сумма чисел на четырех гранях, сходящихся в общей вершине, будет постоянна. Эта сумма всегда равна 18, однако существует три различных способа нумерации граней (мы не считаем различными кости, которые переходят друг в друга при поворотах и отражениях), удовлетворяющих заданному выше условию.

Изящный способ построения додекаэдра предложен книге Гуго Штейнгауза "Математический калейдоскоп" * . Из плотного картона нужно вырезать две фигуры, показанные на рис. 95. Стороны пятиугольников должны быть около 2,5-3 см. Лезвием ножа осторожно надрежем картон вдоль сторон внутреннего пятиугольника, с тем чтобы развертка легко сгибалась в одну сторону. Подготовив таким же образом вторую развертку, наложим ее на первую так, чтобы выступы второй развертки пришлись против вырезов первой. Придерживая обе развертки рукой, скрепим их резинкой, пропуская ее попеременно то над выступающим концом одной развертки, то под выступающим концом другой. Ослабив давление руки на развертки, вы увидите, как на ваших глазах, словно по волшебству, возникнет додекаэдр.

* (Эта игрушка была приложена лишь к первому изданию книги Г. Штейнгауза . В дальнейших изданиях, в том числе и в русском (1949), ее нет.- Прим. ред. )

Раскрасим модель додекаэдра таким образом, чтобы каждая грань была выкрашена только одним цветом. Чему равно наименьшее число красок, которыми можно раскрасить додекаэдр, если требуется, чтобы любые две смежные грани были разного цвета? Ответ: наименьшее число красок равно четырем. Нетрудно убедиться, что существуют четыре различных способа наиболее экономной раскраски додекаэдра (при этом два раскрашенных додекаэдра будут зеркальными отражениями двух других). Для раскраски тетраэдра также требуется четыре краски, но существует лишь два варианта раскраски, при этом один тетраэдр переходит в другой при зеркальном отражении. Куб можно раскрасить тремя, а октаэдр - двумя красками. Для каждого из этих тел существует лишь один способ наиболее экономной раскраски. Раскрасить икосаэдр можно всего лишь тремя красками, но сделать это можно не менее чем 144 способами. Лишь в 6 из них раскрашенные икосаэдры совпадают со своими зеркальными отражениями.

Рассмотрим еще одну задачу. Предположим, что муха, разгуливая по 12 ребрам икосаэдра, ползает по каждому из них по крайней мере один раз. Каков наименьший путь, который должна проделать муха, чтобы побывать на всех ребрах иксаэдра? Возвращаться в исходную точку не обязательно; некоторые ребра мухе придется пройти дважды (из всех пяти Платоновых тел только октаэдр обладает тем свойством, что его ребра можно обойти, побывав на каждом из них лишь по одному разу). Решению задачи может помочь проекция икосаэдра на плоскость (рис. 96). Только следует иметь в виду, что длина всех ребер одинакова.

Поскольку и поныне встречаются чудаки, все еще пытающиеся найти решение задач о трисекции угла и квадратуре круга, хотя давно уже доказано, что ни то, ни другое невозможно, кажется странным, что никто не предпринимает попыток найти новые правильные многогранники сверх уже известных пяти Платоновых тел. Одна из причин такого парадоксального положения заключается в том, что понять, почему не существует более пяти правильных тел, крайне несложно. Следующее простое доказательство существования не более пяти правильных тел восходит к Евклиду.

Многогранный угол правильного тела должен быть образован по крайней мере тремя гранями. Рассмотрим простейшую из граней: равносторонний треугольник. Многогранный угол можно построить, приложив друг к другу три, четыре или пять таких треугольников. При числе треугольников свыше пяти сумма плоских углов, примыкающих к вершине многогранника, составляет 360° или даже больше, и, следовательно, такие треугольники не могут образовывать многогранный угол. Итак, существует лишь три способа построения правильного выпуклого многогранника с треугольными гранями. Пытаясь построить многогранный угол из квадратных граней, мы убедимся, что это можно сделать лишь из трех граней. Аналогичными рассуждениями нетрудно показать, что в одной вершине правильного многоугольника могут сходиться три и только три пятиугольные грани. Грани не могут иметь форму многоугольников с числом сторон больше 5, так как, приложив, например, друг к другу три шестиугольника, мы получим в сумме угол в 360 0 .

Приведенное только что рассуждение не доказывает возможности построения пяти правильных тел, оно лишь объясняет, почему таких тел не может быть больше пяти. Более тонкие рассуждения заставляют прийти к выводу, что в четырехмерном пространстве имеется лишь шесть правильных политопов (так называются аналоги трехмерных правильных тел). Любопытно отметить, что?в пространстве любого числа измерений, большем 4, существует лишь три правильных политопа: аналоги тетраэдра, куба и октаэдра.

Невольно напрашивается вывод. Математика в значительной мере ограничивает многообразие структур, которые могут существовать в природе. Обитатели далее самой отдаленной галактики не могут играть в кости, имеющие форму неизвестного нам правильного выпуклого многогранника. Некоторые теологи честно признали, что даже сам господь бог не смог бы построить шестое платоново тело в трехмерном пространстве. Точно так же геометрия ставит непреодолимые границы разнообразию структуры кристаллов. Может быть, наступит день, когда физики откроют математические ограничения, которым должно удовлетворять число фундаментальных частиц и основных законов природы. Разумеется, никто сейчас не имеет ни малейшего представления о том, каким образом математика делает невозможной ту или иную структуру, называемую "живой" (если только математика вообще причастна к этому кругу явлений). Вполне допустимо, например, что наличие углеродных соединений является непременным условием возникновения жизни. Как бы то ни было, человечество заранее готовит себя к мысли о возможности существования жизни на других планетах. Платоновы же тела служат напоминанием о том, что на Марсе и Венере может не оказаться многого из того, о чем думают наши мудрецы.

Ответы

Полное сопротивление цепи, образованной ребрами куба (сопротивление каждого ребра 1 ом ) составляет 5 / 6 ома . Соединим накоротко три ближайшие к А вершины куба и проделаем то же самое с тремя вершинами, ближайшими к В. Мы получим две треугольные цепи. Ни в одной из них тока не будет, так как они соединяют эквипотенциальные точки. Нетрудно заметить, что между вершиной А и ближайшей к ней треугольной цепью параллельно включены три сопротивления по 1 ому (общее сопротивление 1 / 3 ома ), между двумя треугольными цепями в параллель соединено 6 сопротивлений по 1 ому (общее сопротивление этого участка цепи 1 / 6 ома ) и между второй треугольной цепью и точкой В имеется 3 параллельно соединенных проводника по 1 ому (то есть всего 1 / 3 ома ). Таким образом, полное сопротивление цепи между точками А и В равно 5 / 6 ома .

И условие задачи, и метод решения нетрудно обобщить на случай цепи, образованной ребрами четырех остальных Платоновых тел.

Перечислим три способа нумерации граней октаэдра, удовлетворяющих условию: сумма чисел на гранях, примыкающих к любой вершине, должна быть равна 18. Числа, встречаемые при обходе (по часовой стрелке или против нее) одной вершины: 6, 7, 2, 3; при обходе противоположной вершины: 1, 4, 5, 8 (6 рядом с 1, 7 рядом с 4 и т. д.); при обходе остальных вершин: 1, 7, 2, 8 и 4, 6, 3, 5; 4, 7, 2, 5 и 6, 1, 8, 3. Простое доказательство того, что октаэдр - единственное из пяти правильных тел, чьи грани можно пронумеровать так, чтобы сумма чисел на гранях, примыкающих к любой вершине, была постоянна, можно найти в книге У. У. Роуза Болла * .

* (W. W. Rouse Ball, Mathematical recreations and essays, London, MacMillan, New York, St. Martin"s Press, 1956, p. 418. )

Кратчайшее расстояние, которое должна преодолеть муха для того, чтобы побывать на всех ребрах икосаэдра, равно 35 единицам (единица - длина ребра икосаэдра). Стерев пять ребер икосаэдра (например, ребра FM, BE, JA, ID и НС на рис. 96), мы получим граф, на котором нечетное число ребер сходится только в двух точках G и К. Поэтому муха может обойти весь этот граф (начав свой путь к точке G и закончив его в точке К), пройдя по каждому ребру лишь один раз. Пройденное мухой расстояние равно 25 единицам. Это самый длинный путь, все участки которого проходятся по одному разу. Если муха на своем пути встречает стертые ребра, мы просто добавляем их к пути из G в К, считая, что муха проходит их дважды (в противоположных направлениях). Пять стертых ребер, проходимых дважды, составляют добавку в 10 единиц к уже пройденному пути. В сумме это и составляет 35 единиц.

Многогранники, двойственные архимедовым телам. Как и архимедовых тел, их 13. Ромбододекаэдр … Википедия

Додекаэдр Правильный многогранник, или Платоново тело это выпуклый многогранник с максимально возможной симметрией. Многогранник называется правильным, если: он выпуклый все его грани являются равными правильными многоугольниками в каждой его… … Википедия

Додекаэдр Правильный многогранник или платоново тело это выпуклый многогранник, состоящий из одинаковых правильных многоугольников и обладающий пространственной симметрией … Википедия

Эта статья предлагается к удалению. Пояснение причин и соответствующее обсуждение вы можете найти на странице Википедия:К удалению/22 ноября 2012. Пока процесс обсуждени … Википедия

Часть пространства, ограниченная совокупностью конечного числа плоских многоугольников (см. ГЕОМЕТРИЯ), соединенных таким образом, что каждая сторона любого многоугольника является стороной ровно одного другого многоугольника (называемого… … Энциклопедия Кольера

Полуправильные многогранники в общем случае это различные выпуклые многогранники, имеющие определённые признаки правильных, такие как одинаковость всех граней или являемость всех граней правильными многоугольниками, а также пространственная … Википедия

Или Архимедовы тела выпуклые многогранники, обладающие двумя свойствами: Все грани являются правильными многоугольниками двух или более типов (если все грани правильные многоугольники одного типа, это правильный многогранник); Для любой пары… … Википедия

Тип Правильный многогранник Грань Правильный пятиугольник Граней 12 Рёбер 30 Вершин 20 … Википедия

Анимация Тип Правильный многогранник Грань Правильный треугольник Граней 20 … Википедия

У этого термина существуют и другие значения, см. Куб (значения). Куб Тип Правильный многогранник Грань квадрат … Википедия

Книги

  • Сакральная геометрия, нумерология, музыка, космология, или КВАДРИВИУМ , Мартино Д., Ланди М. и др.. «Всюду познаешь, насколько возможно, единство природы»(«Золотые стихи» Пифагорейцев)«Мир (космос) был создан не для тебя – но ты для него»(Ямвлих, античный философ)Данная иллюстрированная…
  • Волшебные грани, № 11, 2015 , . Создание моделей многогранников из картона очень увлекательное и доступное занятие, это "магия превращения" листа бумаги в объемную фигуру. Самые простые модели многогранников могут быть…

Платоновы тела - это совокупность всех правильных многогранников, объемных (трехмерных) тел, ограниченных равными правильными многоугольниками, впервые описанных Платоном. Им также посвящена заключительная, XIII книга «Начал» Платонова ученика Евклида. При всём бесконечном многообразии правильных многоугольников (двумерных геометрических фигур, ограниченных равными сторонами, смежные пары которых попарно образуют равные между собой углы), существует всего пять объемных П. т., в соответствие которым со времен Платона ставятся пять стихий мироздания: тетраэдр, куб, октаэдр, икосаэдр, додекаэдр.

Платоновы тела

Знание о первоэлементах было доступно древним восточным культурам, таким как индийская и китайская. Платон, а также пифагорейцы, тщательно изучили философские, математические и магические аспекты правильных выпуклых многогранников. Согласно древним знаниям, каждый из этих многогранников соответствует определенной стихии мироздания (первоэлементу) и концентрирует ее энергию. Вершины многогранников излучают энергию, а центры граней поглощают. Ниже дана иллюстрация связи Платоновых тел и первоэлементов из книги Друнвало Мельхиседека "Древняя тайна цветка жизни" :

Далее рассмотрены энергетические характеристики многоугольников с точки зрения китайского учения «У-cин». Зная иньский или янский характер излучения многогранников, а также энергии их стихий, доктора китайской медицины могут оперировать ими как средствами, гармонизирующими энергию человека.

Гексаэдр (куб) имеет 8 излучающих энергию точек-вершин и 6 граней, в которых происходит поглощение энергии. Так как излучающих точек больше, чем поглощающих, то в соответствии с китайским учением «У-Син» куб относится к мужскому принципу «Ян».

У октаэдра существует 6 точек-вершин излучения и 8 граней поглощения. Следовательно, октаэдр поглощает больше энергии, чем излучает, поэтому он относится к женскому началу «Инь».

Тетраэдр имеет 4 вершины и 4 грани, что приводит к равенству «Инь-Ян».

У икосаэдра 12 вершин и 20 граней, имеющих вид правильных треугольников, поэтому он выражает принцип «Инь».

Додекаэдр имеет 20 вершин и 12 граней и поэтому он выражает принцип «Ян». Его 12 граней имеют форму правильных пятиугольников.

Согласно Мельхиседеку, существует связь между Платоновыми телами из " Цветком жизни ", точнее, они сокрыты в Кубе Метатрона , который заложен в Цветке жизни. В этой статье я дам лишь немного информации из этой книги для ознакомления. Тема эта очень сложна и обширна, но если вы захотите её изучить подробно, книга "Древняя тайна цветка жизни" доступна в интернете.

Цветок жизни - это современное название геометрической фигуры, состоящей из нескольких расположенных равномерно, одинаковых окружностей, которые образуют рисунок с шестикратной симметрией, как у Гексагона (шестигранника). Это древнейший символ сакральной геометрии, известный многим древним культурам по всей Земле, изображающий, как полагают, основную форму существования пространства и времени:

Цветок жизни

Цветок жизни - двухмерное изображение - является символом, проекцией трёхмерной фигуры. И в этой трёхмерной фигуре сокрыт Куб Метатрона:

Куб Метатрона

Куб Метатрона, вписанный в Цветок жизни.

Куб Метатрона соответственно также является не плоской фигурой, а трёхмерным телом. Если соединить линиями все центры шаров Куба Метатрона, то эти линии будут гранями пяти Платоновых тел:

Тетраэдр, вписанный в Куб Метатрона.

Куб, вписанный в Куб Метатрона.

Октаэдр, вписанный в Куб Метатрона.

Икосаэдр, вписанный в Куб Метатрона.

Додекаэдр, вписанный в Куб Метатрона.

Пифагорейская школа мистерий, Платон и древние греки считали, что эти пять тел являются основными паттернами, стоящими за физическим мирозданием. Тем не менее, эти древние знания известны с незапамятных времен. Четыре тела - это архетипические паттерны, стоящие за четырьмя элементами всего мироздания: Земли, Огня, Воздуха и Воды. Пятый паттерн считался Универсальной Субстанцией мироздания, и в некоторых тайных школах его считали Пятым элементом - Эфиром. Пятое тело - это додекаэдр, и его использование в материальном мире тщательно скрывали, поскольку чувствовали опасность его неправильного применения. Мы точно знаем, что Негативная Инопланетная Программа, многие тайные общества и линии Иллюминатов неправильно использовали их как формы, лежащие в основе десяти реверсивных структур, помещенных в Землю в качестве матрицы Управление сознанием.

Это названо Реверсивными Сетями 55 и выражается формами додекаэдра, многие из которых связаны с реверсивной матрицей, используемой для служения Я сущностей. Таким образом, в нашей модели мы рассмотрим додекаэдр как элементную матрицу или субстанцию, используемую для формирования времени и пространства. Матрица может быть запрограммирована с различными углами преломления света, неорганически изгибающими время и пространство. Посредством Иерогамии происходит модернизация - Звезда Меркурий (Star of Azoth), с Кристальной Звезды, Семи Священных Солнц, содержащих компонент Космического Эфира. Этот пятый элемент усовершенствуется в шестой, поддерживающий нашу связь и общение в соответствии с Космическим Верховный Законом и под руководством Кристальной Звезды. Космический Эфир или Квинтэссенция Матери проявляется в любом геометрическом волновом паттерне и вдыхает жизнь в форму. Она создает потомство как множественные фрактальные паттерны спиралей, являющееся созданиями, рожденными в форме и материи. Платоновы тела упорядочены в фрактальных паттернах, сплетающих Морфогенетическое Поле в Проект, который в пространстве проявляет матрицу, связывающую атомы со Звездами в их астрономических паттернах. Хотя формы платонических тел различны, соотношения, структура и голографический рисунок подобны. Это соответствует Герметическому принципу «Что наверху, то и внизу».

Эти астрономические паттерны наблюдаются в ежегодном движении по эклиптике через созвездия Солнца, которое движется на протяжении многих тысяч лет в эволюционных циклах, называемых Прецессией Равноденствий. Вселенная движется и развивается по спирали. Все противоположные полярности растворяются, приходя по спирали в равновесие. Баланс между полярностями можно наблюдать в спиральном движении. Движение энергии по спирали имеет основной центр, в котором существует абсолютный ноль спирали, это нейтральный центр или центр покоя. Этот основной центр спирали сознания имеется у всех живых существ.

Пять Платоновых тел - это строительные блоки Священной Геометрии в сознании, имеющие одинаковые особенности:

Все грани имеют один и тот же размер

Все ребра имеют одинаковую длину

Все углы тела равны

Все тела можно вписать в сферу

Тетраэдр - первое платоново тело, четыре грани которого - правильные треугольники, представляет стихию огня. Оно связано с пересечением траекторий планет Юпитера и Марса, которое было впервые обнаружено Иоганном Кеплером.

Гексаэдр - второе Платоново тело, шесть граней которого - квадраты, символизирует стихию земли. Оно связано с пересечением траекторий планет Сатурна и Юпитера, которое было впервые обнаружено Иоганном Кеплером.

Октаэдр - третье Платоново тело, восемь граней которого - правильные треугольники, и оно представляет стихию воздуха. Это связано с пересечением траекторий планет Марса и Земли, которое было впервые обнаружено Иоганном Кеплером.

Додекаэдр - четвертое Платоново тело, двенадцать граней которого - правильные пятиугольники, представляет элемент времени и пространства, субстанцию, их которой строятся матрицы. Оно связано с пересечениями траекторий планет Земли и Венеры, которое было впервые обнаружено Иоганном Кеплером.

Икосаэдр - пятое Платоново тело, двадцать граней которого - равносторонние треугольники, символизирует стихию воды. Оно связано с пересечениями траекторий планет Венеры и Меркурия, которое было впервые обнаружено Иоганном Кеплером.

Единое поле сети

Платоновы тела - это геометрически сформированные композиции, которые организованы в различные группы, чтобы провести кодировку основы структуры сети. Сеть - общий термин, применяемый для объяснения множественных уровней Морфогенетического Поля, которые формируют Единое Поле живой субстанции, посредством которой все связано во Вселенной. Сеть представляет ткань, в которой уровни кристаллических проектов сплетаются в проявление, поддерживая форму и сознание. Энергия сети - это сама сущность и ткань Вселенной.

Геометрические формы - это кристаллические структуры, формирующие многомерные уровни форм сознания и материи. Они действуют как частотные строительные блоки и звуковые тоны, на основе которых формируются основные шаблоны тел. Геометрические формы - это то, что проецирует и расширяет формы сознания во времени и пространстве, а также возвращает тело Сознания в основной центр. Они закладывают геометрический фундамент всей материи, структур и биологии, которые воспринимают пространство и время во всем Космосе. Эти основные геометрические тела формируют электромагнитные поля, перемещаясь одновременно во многих измерениях, и управляют тем, как эти поля проявляют и строят материальные формы. Платоновы тела формируют кристаллическую матрицу электромагнитных полей и сознания, пронизывающую и связывающую все во Вселенной.

Священная геометрия

Основные геометрические формы Платоновых тел организованы в группы, из которых формируются более сложные наборы команд и геометрические коды. Все материальные формы и энергия сознания структурированы на основе этих основных групп и установок геометрического кодирования. Это определяет основную атомную структуру и генетику формы, ее характеристики и индивидуальность. Работа со Священной Геометрией - это работа с группами геометрических паттернов, обусловленных Платоновыми телами. Обратите внимание, что эти группы формируют определенное кодирование, направляющее световые и звуковые волны на формирование множественных выражений во многих измерениях одновременно. Эти геометрические коды удерживают основной шаблон проявления во всех отдельных формах. Они также поддерживают основную структуру, формирующую сознание внутри всех вещей во Вселенной. Свойства проявления форм могут быть изменены или адаптированы путем реконфигурации этих основных геометрических кодов.

Священная Геометрия содержит все инструкции и строительные блоки для Проектов всего мироздания, от непроявленных миров до проявленных, и является основой всех форм и Сознания. Священная Геометрия - это паттерн Сознания. На любом уровне, от кванта до огромных планетарных и астрономических тел, каждый паттерн роста, изменения или движения соответствует с математической точностью одному или более геометрическим формам. Священная Геометрия - это древняя метафизическая наука, изучающая математические паттерны, которые заложены в мироздании, и выясняющая точный способ, которым Вселенная организует сама себя. Священная Геометрия раскрывает основную связь, лежащую в основе всех вещей, в математической форме, посредством чисел и геометрии, доказывая скрытый порядок, стоящий за всем мирозданием, в Божественном Бесконечном Исчислении. Великое понимание, что «Бог - это математика», а Священная Геометрия - это язык Вселенной, стоящий за всеми формами мироздания, создает космологию единства, а не ощущение разделенности.

Постижение Священной Геометрии путем медитаций или созерцания важно для исследования природы, понимания цели и необходимости образования Души-Духа. Наш уникальный паттерн души держит математические паттерны и геометрические формы, предписывающие паттерн нашего сознания. Когда мы изучаем эти структуры сознания, мы получаем более глубокое понимание математических паттернов и кодов, открывающих символизм природы нашего отношения к самим себе, к Вселенной и Богу.

Все имеет паттерн, лежащий в основе проекта, являющийся ключом к созданию определенных событий и воздействующий на наше сознание или восприятие. Изучая естественные изменения и движения царств природы, геометрию, присущую природе, мы получаем богатую информацию о том, как природа работает. Все формы производят в соответствии с Гендерным Принципом Созидания. Все создано путем соединения принципов Матери и Отца.

Перевод:

Суворов Михаил, ученик 10 класс

Данная работа посвящена описанию взглядов древнегреческого философа Платона на строение Вселенной, через использование правильных многоугольников, таких как тетраэдр, октаэдр, гексаэдр (куб), додекаэдр и икосаэдр. В современной математике эти тела получили название Платоновых.

Также в работе находит отражение вопрос о том, как используются в современных естественнонаучных теориях Платоновы тела.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Исследовательская работа по геометрии. Тема: «Платоновы тела» Подготовили презентацию: суворовец Суворов Михаил Преподаватель математики Харькова Марина Валерьевна

Платон (427–347 до н.э.) – великий древнегреческий философ, ученик Сократа, основатель Академии. Главная заслуга Платона в истории математики заключается в том, что он признавал, что знание математики необходимо каждому образованному человеку. Вклад Платона в математику незначителен. Однако его идеи относительно структуры и методов математики чрезвычайно ценны. Он ввел традицию давать безукоризненные определения и определять, какие положения в математических соображениях можно принимать без доказательства. Платон первым обосновал метод доказательства от противного, который теперь широко применяется в геометрии. В школе Платона особое внимание уделялось решению задач на построение. Благодарю этому в ней сформировалось понятие о геометрическом месте точек, а также была разработана методика решения задач на построение. Выпуклые правильные многогранники - тетраэдр, октаэдр, гексаэдр (куб), додекаэдр и икосаэдр - принято называть Платоновыми телами.

Определение: ПЛАТОНОВЫ ТЕЛА- от греч. Platon 427-347 гг. до н.э. – совокупность всех правильных многогранников [ т. е. объёмных тел, ограниченных равными правильными многоугольниками ] трёхмерного Мира, впервые описанных Платоном.

Правильным многоугольником называется: ограниченная прямыми плоская фигура с равными сторонами и равными внутренними углами. Аналогом правильного многоугольника в трехмерном пространстве служит правильный многогранник: пространственная фигура с одинаковыми гранями, имеющими форму правильных многоугольников, и одинаковыми многогранными углами при вершинах. Существует лишь пять правильных выпуклых многогранников: правильный тетраэдр, куб, октаэдр, додекаэдр и икосаэдр.

История создания Платоновых тел. Четыре многогранника олицетворяли в ней четыре сущности или «стихии». Тетраэдр символизировал Огонь, так как его вершина устремлена вверх; Икосаэдр - Воду, так как он самый «обтекаемый» многогранник; Куб - Землю, как самый «устойчивый» многогранник; Октаэдр - Воздух, как самый «воздушный» многогранник. Пятый многогранник, Додекаэдр, воплощал в себе «все сущее»

Тетраэдр Древние греки дали многограннику имя по числу граней. «Тетра» означает четыре, « хедра » - означает грань (тетраэдр – четырехгранник).Многогранник относится к правильным многогранникам и является одним из пяти платоновых тел. Тетраэдр имеет следующие характеристики: Тип грани – правильный треугольник; Число сторон у грани – 3; Общее число граней – 4; Число рёбер примыкающих к вершине – 3; Общее число вершин – 4; Общее число рёбер – 6 ; Правильный тетраэдр составлен из четырех равносторонних треугольников. Каждая его вершина является вершиной трех треугольников. Следовательно, сумма плоских углов при каждой вершине равна 180°. Тетраэдр не имеет центра симметрии, но имеет 3 оси симметрии и 6 плоскостей симметрии.

Гексаэдр (более привычное название - куб) Древние греки дали многограннику имя по числу граней. « Гексо » означает шесть, « хедра » - означает грань (Гексаэдр – шестигранник).Многогранник относится к правильным многогранникам и является одним из пяти платоновых тел. Гексаэдр имеет следующие характеристики: Число сторон у грани – 4; Общее число граней – 6; Число рёбер примыкающих к вершине – 3; Общее число вершин – 8; Общее число рёбер – 12 ; Гексаэдр составлен из шести квадратов. Каждая вершина куба является вершиной трех квадратов. Следовательно, сумма плоских углов при каждой вершине равна 270°. Гексаэдр не имеет центра симметрии, но имеет 3 оси симметрии и 6 плоскостей симметрии.

Икосаэдр Древние греки дали многограннику имя по числу граней. « Икоси » означает двадцать, « хедра » - означает грань (Икосаэдр – двадцатигранник). Многогранник относится к правильным многогранникам и является одним из пяти платоновых тел. Икосаэдр имеет следующие характеристики: Тип грани – правильный треугольник; Число сторон у грани – 3; Общее число граней – 20; Число рёбер примыкающих к вершине – 5; Общее число вершин – 12; Общее число рёбер – 30 ; Правильный икосаэдр составлен из двадцати равносторонних треугольников. Каждая вершина икосаэдра является вершиной пяти треугольников. Следовательно, сумма плоских углов при каждой вершине равна 270°. Икосаэдр имеет центр симметрии - центр икосаэдра, 15 осей симметрии и 15 плоскостей симметрии.

Октаэдр Древние греки дали многограннику имя по числу граней. «Окто» означает восемь, « хедра » - означает грань (октаэдр – восьмигранник).Многогранник относится к правильным многогранникам и является одним из пяти платоновых тел. Октаэдр имеет следующие характеристики: Тип грани – правильный треугольник; Число сторон у грани – 3; Общее число граней – 8; Число рёбер примыкающих к вершине – 4; Общее число вершин – 6; Общее число рёбер – 12 ; Правильный октаэдр составлен из восьми равносторонних треугольников. Каждая вершина октаэдра является вершиной четырех треугольников. Следовательно, сумма плоских углов при каждой вершине равна 240°. Октаэдр имеет центр симметрии - центр октаэдра, 9 осей симметрии и 9 плоскостей симметрии.

Додекаэдр Древние греки дали многограннику имя по числу граней. « Додека » означает двенадцать, « хедра » - означает грань (додекаэдр – двенадцатигранник). Многогранник относится к правильным многогранникам и является одним из пяти платоновых тел. Додекаэдр имеет следующие характеристики: Тип грани – правильный пятиугольник; Число сторон у грани – 5; Общее число граней – 12; Число рёбер примыкающих к вершине – 3; Общее число вершин – 20; Общее число рёбер – 30 ; Правильный додекаэдр составлен из двенадцати правильных пятиугольников. Каждая вершина додекаэдра является вершиной трех правильных пятиугольников. Следовательно, сумма плоских углов при каждой вершине равна 324°. Додекаэдр имеет центр симметрии - центр додекаэдра, 15 осей симметрии и 15 плоскостей симметрии.

Применение платоновых тел в науке Иоганн Кеплер (1571-1630 г.) – немецкий астроном. Открыл законы движения планет. В 1596 Кеплер предположил правило, по которому вокруг сферы Земли описывается додекаэдр, а в нее вписывается икосаэдр. Р асстояние между орбитами планет можно получить на основании Платоновых тел, вложенных друг в друга. Расстояния вычисленные при помощи этой модели, были достаточно близки к истинным.

В. Макаров и В. Морозов считают что ядро Земли имеет форму и свойства растущего кристалла оказывающего развитие всех природных взаимодействий и процессов идущих на планете. Силовое поле этого растущего кристалла обуславливает икосаэдро - додекаэдрическую структуру Земли (ИДСЗ). Эти многогранники вписаны друг в друга. Все природные аномалии, а также очаги развития цивилизаций соответствуют вершинам и рёбрам этих фигур.

Примеры: Некоторые из правильных многогранников встречаются в природе в виде кристаллических вирусов. Вирус полиомиелита имеет форму додекаэдра. Он может жить и размножаться только в клетках человека или примата. На микроскопическом уровне додекаэдр и икосаэдр является относительными параметрами ДНК, по которым построена вся жизнь. Можно увидеть, что молекула ДНК представляет собой вращающийся в куб.

Применение в кристаллографии Тела Платона нашли широкое применение в кристаллографии, так как многие кристаллы имеют форму правильных многогранников. Например, куб - монокристалл поваренной соли (NaCl), октаэдр - монокристалл алюмокалиевых квасцов, одна из форм кристаллов алмаза – октаэдр.

http:// www.trinitas.ru/rus/doc/0232/004a/02320031.htm http:// www.mnogogranniki.ru/stati/129-svojstva-platonovyh-tel.html stepanov.lk.net http://www.goldenmuseum.com/0213Solids_rus.html