Теплые вещи

Классификация силы ветра, волнения на море, и видимости на море. Как измеряют скорость и направление ветра? Сила ветра измеряется в баллах по шкале

Перемещение воздуха над поверхностью Земли в горизонтальном направлении называется ветром. Ветер всегда дует из области высокого давления в область низкого.

Ветер характеризуется скоростью, силой и направлением .

Скорость и сила ветра

Скорость ветра измеряется в метрах в секунду или в баллах (один балл приблизительно равен 2 м/с). Скорость зависит от барического градиента: чем больше барический градиент, тем выше скорость ветра.

От скорости зависит сила ветра (табл. 1). Чем больше разность между соседними участками земной поверхности, тем сильнее ветер.

Таблица 1. Сила ветра у земной поверхности по шкале Бофорта (на стандартной высоте 10 м над открытой ровной поверхностью)

Баллы Бофорта

Словесное определение силы ветра

Скорость ветра, м/с

Действие ветра

Штиль. Дым поднимается вертикально

Зеркально гладкое море

Направление ветра заметно но относу дыма, но не по флюгеру

Рябь, пены на гребнях нет

Движение ветра ощущается на лице, шелестят листья, приводится в движение флюгер

Короткие волны, гребни не опрокидываются и кажутся стекловидными

Листья и тонкие ветви деревьев все время колышутся, ветер развевает верхние флаги

Короткие, хорошо выраженные волны. Гребни, опрокидываясь, образуют стекловидную пену, изредка образуются маленькие белые барашки

Умеренный

Ветер поднимает пыль и бумажки, приводит в движение тонкие ветви деревьев

Волны удлиненные, белые барашки видны во многих местах

Качаются тонкие стволы деревьев, на воде появляются волны с гребнями

Хорошо развитые в длину, но не очень крупные волны, повсюду видны белые барашки (в отдельных случаях образуются брызги)

Качаются толстые ветви деревьев, гудят телеграфные провода

Начинают образовываться крупные волны. Белые пенистые гребни занимают значительные плошали (вероятны брызги)

Качаются стволы деревьев, идти против ветра трудно

Волны громоздятся, гребни срываются, пена ложится полосами по ветру

Очень крепкий

Ветер ломает сучья деревьев, идти против ветра очень трудно

Умеренно высокие длинные волны. По краям гребней начинают взлетать брызги. Полосы пены ложатся рядами по направлению ветра

Небольшие повреждения; ветер срывает дымовые колпаки и черепицу

Высокие волны. Пена широкими плотными полосами ложится по ветру. Гребни волн начинают опрокидываться и рассыпаться в брызги, которые ухудшают видимость

Сильный шторм

Значительные разрушения строений, деревья вырываются с корнем. На суше бывает редко

Очень высокие волны с длиннымизагибающимися вниз гребнями. Образующаяся пена выдувается ветром большими хлопьями в виде густых белых полос. Поверхность моря белая от пены. Сильный грохот волн подобен ударам. Видимость плохая

Жестокий шторм

Большие разрушения на значительном пространстве. На суше наблюдается очень редко

Исключительно высокие волны. Суда небольшого и среднего размера временами скрываются из вида. Море все покрыто длинными белыми хлопьями пены, располагающимися по ветру. Края волн повсюду сдуваются в пену. Видимость плохая

32,7 и более

Воздух наполнен пеной и брызгами. Море все покрыто полосами пены. Очень плохая видимость

Шкала Бофорта — условная шкала для визуальной оценки силы (скорости) ветра в баллах по его действию на наземные предметы или по волнению на море. Была разработана английским адмиралом Ф. Бофортом в 1806 г. и сначала применялась только им самим. В 1874 г. Постоянный комитет Первого метеорологического конгресса принял шкалу Бофорта для использования в Международной синоптической практике. В последующие годы шкала менялась и уточнялась. Шкалой Бофорта широко пользуются в морской навигации.

Направление ветра

Направление ветра определяется по той стороне горизонта, с которой он дует, например, ветер, дующий с юга, — южный. Направление ветра зависит от распределения давления и от отклоняющего действия вращения Земли.

На климатической карте господствующие ветры показаны стрелками (рис. 1). Ветры, наблюдаемые у земной поверхности, очень разнообразны.

Вы уже знаете, что поверхность суши и воды нагревается по-разному. В летний день поверхность суши нагревается сильнее. От нагревания воздух над сушей расширяется и становится легче. Над водоемом в это время воздух холоднее и, следовательно, тяжелее. Если водоем сравнительно большой, в тихий жаркий летний день на берегу можно почувствовать легкий ветерок, дующий с воды, над которой выше, чем над сушей. Такой легкий ветерок называют дневным бризом (от франц. brise — легкий ветер) (рис. 2, а). Ночной бриз (рис. 2, б), наоборот, дует с суши, так как вода охлаждается гораздо медленнее и воздух над ней теплее. Бризы могут возникать и на опушке леса. Схема бризов представлена на рис. 3.

Рис. 1. Схема распределения господствующих ветров на земном шаре

Местные ветры могут возникать не только на побережье, но и в горах.

Фён — теплый и сухой ветер, дующий с гор в долину.

Бора — порывистый, холодный и сильный ветер, появляющийся, когда холодный воздух переваливает через невысокие хребты к теплому морю.

Муссон

Если бриз меняет направление два раза в сутки — днем и ночью, то сезонные ветры - муссоны — меняют свое направление два раза в год (рис. 4). Летом суша быстро прогревается, и давление воздуха над ее поверхностью надает. В это время более прохладный воздух начинает перемещаться на сушу. Зимой — все наоборот, поэтому муссон дует с суши на море. Со сменой зимнего муссона на летний происходит смена сухой малооблачной погоды на дождливую.

Действие муссонов сильно проявляется в восточных частях материков, где с ними соседствуют огромные пространства океанов, поэтому такие ветры часто приносят на материки обильные осадки.

Неодинаковый характер циркуляции атмосферы в разных районах земного шара определяет различия в причинах и характере муссонов. В результате различают внетропические и тропические муссоны.

Рис. 2. Бриз: а — дневной; б — ночной

Рис. 3. Схема бризов: а — днем; б — ночью

Рис. 4. Муссоны: а — летом; б — зимой

Внетропические муссоны — муссоны умеренных и полярных широт. Они образуются в результате сезонных колебаний давления над морем и сушей. Наиболее типичная зона их распространения — Дальний Восток, Северо-Восточный Китай, Корея, в меньшей степени — Япония и северо-восточное побережье Евразии.

Тропические муссоны — муссоны тропических широт. Они обусловлены сезонными различиями в нагревании и охлаждении Северного и Южного полушарий. В результате зоны давления смещаются по сезонам относительно экватора в то полушарие, в котором в данное время лето. Тропические муссоны наиболее типичны и устойчивы в северной части бассейна Индийского океана. Этому в немалой мере способствует сезонная смена режима атмосферного давления над Азиатским материком. С южноазиатскими муссонами связаны коренные особенности климата этого региона.

Образование тропических муссонов в других районах земного шара происходит менее характерно, когда более четко выражается один из них — зимний или летний муссон. Такие муссоны отмечаются в Тропической Африке, в северной Австралии и в приэкваториальных районах Южной Америки.

Постоянные ветры Земли - пассаты и западные ветры — зависят от положения поясов атмосферного давления. Так как в экваториальном поясе преобладает низкое давление, а близ 30° с. ш. и ю. ш. — высокое, у поверхности Земли в течение всего года ветры дуют от тридцатых широт к экватору. Это пассаты. Под влиянием вращения Земли вокруг оси пассаты отклоняются в Северном полушарии к западу и дуют с северо-востока на юго-запад, а в Южном они направлены с юго-востока на северо-запад.

От поясов высокого давления (25-30° с. ш. и ю. ш.) ветры дуют не только к экватору, но и в сторону полюсов, так как у 65° с. ш. и ю. ш. преобладает низкое давление. Однако вследствие вращения Земли они постепенно отклоняются к востоку и создают воздушные потоки, перемещающиеся с запада на восток. Поэтому в умеренных широтах преобладают западные ветры.

Ветра и определения направления его дуновения известен как обсерватор, или анемометр. Применяют такие устройство при необходимости контроля над параметрами перемещения воздушных масс.

Принцип функционирования

Несмотря на разнообразие анемометров, которые отличаются конструктивно, большинство из них работают по принципу определения характера действия воздушного потока на подвижные вращающиеся элементы.

Приборы данной категории способны определять максимальную текущую при дуновении потока в определенном направлении. Отдельные модели выдают показатели объемного расхода воздуха, температуры потока, влажности. Таким образом, функциональный прибор для измерения скорости ветра превращается в портативную метеостанцию.

Типы

Выделяют несколько отдельных разновидностей устройств, способных производить расчет скорости ветра. В настоящее время выделяют следующие типы приборов данного назначения:

  • вращательные;
  • вихревые;
  • тепловые;
  • динамометрические;
  • оптические;
  • ультразвуковые.

Давайте подробно рассмотрим устройства каждого типа, определим их возможности, способы эксплуатации.

Вращательные анемометры

Метеорологический прибор может быть оснащен чашками либо лопастями, которые играют роль чувствительного элемента. Последние подвижно закрепляются на вертикальном стержне и соединяются с измерителем. Перемещение воздушных потоков заставляет такие вертушки вращаться вокруг оси. По мере движения измерительный механизм фиксирует количество оборотов в течение определенного временного отрезка. Визуальную информацию выдает шкала скорости ветра либо цифровой дисплей.

Конструкции данного типа изобретены достаточно давно. Однако, несмотря на появление более совершенных приборов, вращательные анемометры до сих пор продолжают успешно эксплуатироваться метеорологами по всему миру.

Вихревые анемометры

В таких приборах измерение скорости и происходит за счет воздействия воздушных потоков на легкое лопастное колесо, расположенное в вертикальной плоскости. Как и в предыдущем случае, вращение крыльчатки посредством воздействия на систему передает данные к счетному механизму.

В настоящее время наиболее распространены ручные вихревые анемометры. Последние используются для измерения скорости воздушных потоков в вентиляционных системах и трубопроводах, устанавливаются в воздуховодах промышленных и жилых объектов.

Тепловые анемометры

Не слишком востребованы тепловые приборы. Чаще всего необходимость в их применении возникает при измерении показателей медленных воздушных потоков.

Функционирует тепловой ветра по принципу измерения температуры нити накаливания либо специальной пластины, на которую оказывается давление воздуха. При различных показателях потока выделяется определенное количество энергии, которое позволяет поддерживать ту или иную температуру теплового элемента. Таким нехитрым способом и определяется скорость ветра.

Динамометрические анемометры

Прибор для измерения скорости ветра может также функционировать благодаря определению показателей давления ветрового потока в средине запаянной с одной стороны Г-образной трубки. Данные получают на основе сравнения избыточного воздушного давления снаружи и внутри элемента.

Динамометрический прибор для измерения скорости ветра применяется не только в метеорологии. Устанавливаются подобные устройства вентиляционных системах и газоходах, где вычисляют объемный расход потоков и их скорость.

Ультразвуковые анемометры

Принцип функционирования устройств данной категории основывается на определении на приемнике в зависимости от показателей потока воздушных масс. Здесь представлены наиболее высокоточные, современные устройства, которые также позволяют фиксировать направление ветровых потоков.

Выделяют трехмерные и двухмерные ультразвуковые приборы. Первые дают возможность получать показатели направления перемещения потоков в трех компонентах. В свою очередь, двухмерный метеорологический прибор позволяет измерять направление и скорость ветра лишь в горизонтальной плоскости. Некоторые ультразвуковые системы производят вычисления температуры воздушных потоков.

Оптические анемометры

Ученые-физики, инженеры, задействованные в космических программах, часто прибегают к применению лазерных оптических приспособлений для измерения скорости и направления перемещения воздушных потоков. Работают подобные устройства согласно определению зависимости рассеянного либо отраженного подвижным объектом света от его скорости. Данный способ не предполагает непосредственного воздействия газообразных, твердых либо жидких веществ на элементы измерительного устройства.

Сфера применения оптических анемометров крайне широка, начиная с определения направлений перемещения веществ в живых клетках и капиллярах и заканчивая вычислением скорости движения газов в атмосфере.

Эксплуатация лазерных устройств помогает с высокой точностью рассчитывать скорость воздушных потоков вокруг подвижных объектов, в частности, автотранспорта, летательных аппаратов, космических тел. Полученные расчеты дают возможность исследователям, инженерам и механикам разрабатывать наиболее аэродинамические формы при конструировании техники.

На что следует обращать внимание при выборе прибора для измерения скорости и направления перемещения воздушных потоков? Определяющее значение здесь имеет перечень задач, что поставлены перед пользователем. В зависимости от этого, значение имеют такие технические характеристики прибора:

  • максимальный измерительный диапазон;
  • величина погрешностей;
  • возможность применения в тех или иных температурных условиях;
  • уровень безопасности для пользователя при воздействии на устройство агрессивных факторов окружающей среды;
  • тип: стационарный либо переносной прибор;
  • степень защищенности механизма от воздействий атмосферных осадков;
  • характер питания устройства и способ формирования данных;
  • габариты прибора;
  • возможность вычисления показателей в ночное время суток (наличие подсветки).

В настоящее время для работы в условиях крайне пониженных температур возможно использование метеорологических приборов с подогревателями. Для рудников и шахт применяют специализированные анемометры, что способны исправно функционировать при высокой запыленности окружающего пространства и во взрывоопасной среде. Такие функциональные приборы переносят воздействие повышенной влажности и остаются работоспособными при значительных перепадах температур.

В итоге

Как видно, в зависимости от личных потребностей, имеется возможность выбрать наиболее подходящее устройство для фиксации показателей воздушных потоков. Однако здесь имеются свои сложности. Поскольку все анемометры являются измерительными приборами, они подлежат сертификации и аттестации в соответствующих государственных учреждениях.

10 апреля 1996 года на острове Барроу в Австралии была зафиксирована самая высокая скорость ветра на Земле. Тогда, во время тропического циклона “Оливия”, ветер разогнался до 408 километров в час. Эту цифру подтвердили ученые из Всемирной метеорологической организации. Как именно они ее вычислили – узнал Криптус.

Обычно метеорологи узнают скорость ветра с помощью чашечного анемометра (другое название - ветромер). Это такой измерительный прибор, на вертикальной оси которого закреплены чашки – полушария, которые вращаются от любого, даже самого легкого, ветра. Чем сильнее ветер, тем быстрее происходит вращение. От оси прибора идет передача к счетчику оборотов. Он и определяет, какая сейчас скорость у ветра - два, три или четыре метра в секунду. Чтобы понять направление, рядом с анемометрами устанавливают флюгеры.

Сейчас каждый человек, который хочет всегда быть в курсе скорости ветра, может купить себе цифровой анемометр. Они недорогие и стоят в пределах 25-35 долларов.

Кстати, до того, как люди научились измерять скорость ветра в метрах в секунду, они пользовались шкалой Бофорта. Этот английский адмирал составил таблицу, в которой характеристики разных ветров сводились к системе баллов – от нуля (полный штиль) до 12 баллов (ураганный ветер, доходящий до скорости 117 км/ч).

Как измерить скорость, силу ветра и дальность видимости.

Определение силы, скорости и направления ветра, дальности видимости, направления и скорости течений крайне важно при планировании и выполнении погружений в открытом море и прибрежной зоне. Бороться с силой природы бессмысленно и порой крайне опасно, поэтому всегда нужно учитывать влияние природных явлений, таких как течение и ветер, при планировани погружений. Приведённая ниже информация поможет Вам оценить силу некоторых явлений природы для того, что бы учесть их при планировании погружений.

Ветер - это перемещение потока воздуха параллельно земной поверхности, возникающее в результате неравномерного распределения тепла и атмосферного давления, и направленное из зоны высокого давления в зону низкого давления.

Ветер характеризуется скоростью (силой) и направлением. Н аправление определяется сторонами горизонта и измеряется градусами. Скорость ветра измеряется в метрах в секудну и километрах в час. Сила ветра измеряется в баллах.

Шкала бофорта - условная шкала для визуального определения и записи скорости (силы) ветра в баллах. Первоначально она была разработана английским адмиралом Френсисом Бофортом в 1806 г. для определения силы ветра по характеру его проявления на море. С 1874 г. принята для повсеместного (на суше и на море) использования в международной синоптической практике. В последующие годы менялась и уточнялась. За ноль баллов было принято состояние полного штиля на море. Изначально система была тринадцатибальная (0-12). В 1946 г. шкалу увеличили до семнадцати (0-17). Сила ветра в шкале определяется по взаимодействию ветра с различными предметами. В последние годы силу ветра чаще оценивают по скорости, измеряемой в метрах в секунду у земной поверхности, на высоте порядка 10 метров над открытой, ровной поверхностью.

В таблице 1 приведена шкала Бофорта, принятая в 1963 году Всемирной метеорологической организацией. Шкала волнения на море - девятибальная (параметры волнения даны для большой морской акватории, на малых акваториях волнение меньше). Приборов для измерения высоты волны не существует, поэтому и волнение моря в баллах определяется достаточно условно.

Сила ветра в баллах по шкале Бофорта и волнение на море.

Короткие, хорошо выраженные волны. Гребни, опрокидываясь, образуют стекловидную пену, изредка образуются маленькие белые барашки. Средняя высота волн до 0,6 м., длина - 6 м.

Волны удлинённые, белые барашки видны во многих местах. Высота волн 1-1,5 м., длина до 15 м.

Хорошо развитые в длину, но не очень крупные волны, повсюду видны белые барашки (в отдельных случаях образуются брызги). Высота волн 1,5-2 м., длина - 30 м.

Начинают образовываться крупные волны. Белые пенистые гребни занимают значительные площади. Образуется водяная пыль. Высота волн - 2-3 м., длина - 50 м.

Волны громоздятся, гребни срываются, пена ложится полосами по ветру. Высота волн до 3-5 м., длина - 70 м.

Умеренно высокие, длинные волны. По краям гребней начинают взлетать брызги. Полосы пены ложатся рядами по направлению ветра. Высота волн 5-7 м., длина - 100 м.

Очень высокие волны с длинными загибающимися вниз гребнями. Образующаяся пена выдувается ветром большими хлопьями в виде густых белых полос. Поверхность моря белая от пены. Сильный грохот волн подобен ударам. Видимость плохая. Высота волн - 8-11 м., длина - 200 м.

Суда небольшого и среднего размера временами скрываются из вида. Море всё покрыто длинными белыми хлопьями пены, располагающимися по ветру. Края волн повсюду сдуваются в пену. Видимость плохая. Высота волн до 16 м., длина до 250 м.

Воздух наполнен пеной и брызгами. Море всё покрыто полосами пены. Очень плохая видимость. Высота волн >16 м., длина - 300 м.

Шкала дальности видимости.

Видимость - это предельное расстояние, на котором днём обнаруживаются предметы, а ночью навигационные огни. Видимость определяется прозрачностью атмосферы, зависит от погодных условий и характеризуется дальностью видимости. Ниже приведена таблица определения дальности видимости в светлое время суток.

Анемометр - прибор, предназначенный для измерения скорости ветра

Прибор для измерения скорости ветра, его силы, а также определения направления его движения в метеорологии называется анемометром. Немногие на сегодняшний день знают, что это такое, ведь прибор так и не получил широкого распространения в отличие, например, от барометра, однако, он все же используется при измерении параметров ветра как на метеорологических станциях, так и в некоторых видах спорта, к примеру, в парусном спорте.

Также он используется в других научных областях для измерения скорости движения газов или воздуха, но наиболее популярным вариантом его использования по-прежнему является эксплуатация в качестве измерителя скорости ветра.

Принцип работы прибора

Принцип работы большинства таких приборов заключается в следующем: какой-либо вращательный элемент прикреплен к измерителю. При дуновении ветра подвижная часть прибора приходит в действие и параметры воздействия на вращательный элемент передаются на измерительный прибор. Так работают механические анемометры, включающие в себя две разновидности: чашечный и крыльчатый анемометры.

Существуют также тепловой анемометр, основанный на измерении сдвигов температуры нагревательного элемента относительно начального значения под воздействием ветра (чем выше скорость воздушных масс, тем меньше температура нагревательного элемента) и ультразвуковой, основанный на измерении сдвигов в показателях скорости звука относительно направления воздушных масс (если скорость звука падает относительно его скорости в неподвижном воздухе, значит, он движется против ветра, если растет - по ветру).

Виды приборов

Принцип работы заключается в измерении характера воздействия воздушных масс на специальные чашки, закрепленные на вертикальной оси. Когда происходит дуновение ветра, чашки вращаются вокруг оси. Измеритель фиксирует количество оборотов вокруг оси по времени и определяет скорость ветра. Данные передаются на шкалу скорости ветра, иногда используется электронный измеритель.

Принцип его работы заключается в измерении характера воздействия ветра на миниатюрное колесо (крыльчатку), закрепленное на вертикальной оси и огражденное металлическим кольцом для защиты от механических повреждений. При движении ветра происходит вращение крыльчатки, которое через систему зубчатых колес передается на измеритель. Данный прибор также имеет две разновидности измерителя: ручной и электронный.

Основан на изменении числа Нуссельта, то есть увеличения теплопотерь нагретого тела пропорционально увеличению скорости движения воздушных масс. Данное явление можно наблюдать в жизни - при равной температуре воздуха в ветреную погоду становится холоднее, чем в спокойную. Данный прибор представляет собой нагретую до температуры, превышающей температуру среды, металлическую проволоку.

В зависимости от текущей скорости, его плотности и влажности ветра проволока выделяет определенное количество энергии, позволяющее поддерживать ту или иную температуру проволоки. Измеритель фиксирует теплопотери и выводит параметры движения ветра на экран. Впрочем, у прибора существует 2 недостатка:

  1. Низкая прочность теплового элемента, так как он представлен очень тонкой проволокой.
  2. Погрешность показаний со временем увеличивается из-за загрязнения и окисления проволоки.

Ввиду вышеописанного их применяют, как правило, применяют в аэродинамике для того, чтобы измерять параметры движения воздушных масс, потому как тепловые анемометры, в отличие от механических, обладают безынерционностью, что является необходимым условием для проведения аэродинамических экспериментов.

Принцип действия заключается в характере изменения скорости звука при движении относительно ветра. Так можно измерять не только текущую силу движения ветра, но и направление его движения. Так как скорость звука зависит еще и от температуры воздуха, то данный анемометр снабжен еще и термометром, по показаниям которого вносятся правки в конечные результаты параметров движения воздушных масс, выдаваемые анемометром.

На сегодняшний день ультразвуковой анемометр является самым высокоточным и современным прибором данной категории. Помимо всего прочего, некоторые электронные анемометры могут измерять также температуру воздуха в момент движения воздушных масс, а также его влажность.

Заключение

В России также производятся многоцелевые приборы этой категории, объединяющие в себе функции различных видов анемометров, такие как измерение температуры воздуха (термоанемометр), его влажность (гирометр), а также вычисление объемного расхода воздуха. Таким анемометром является, к примеру, метеометр МЭС200, дифнамометр ДМЦ01М. Данные приборы применяются при обследовании, ремонте и поверке вентиляции в зданиях.

Все производимые на территории России закрепляются в государственном реестре средств измерения и подлежат обязательной поверке. Потому в России нет анемометров без поверки.

Рассмотрение различных видов приборов под названием анемометр, предназначенных для измерения скорости ветра


Описание анемометров, раскрытие данного понятия, а также рассмотрение различных видов анемометров, в том числе, российских

Ветер - это горизонтальный поток воздуха, который отличается рядом определенных характеристик: силой, направлением и скоростью. Именно для определения скорости ветров ирландский адмирал еще в начале XIX века разработал специальную таблицу. Так называемая шкала Бофорта используется и в наши дни. Что представляет собой шкала? Как правильно нею пользоваться? И что шкала Бофорта не позволяет определить?

Что такое ветер?

Научное определение данного понятия следующее: ветер - это воздушный поток, который движется параллельно земной поверхности из области высокого в область низкого атмосферного давления. Это явление характерно не только для нашей планеты. Так, самые сильные в Солнечной системе ветра дуют на Нептуне и Сатурне. И земные ветра, по сравнению с ними, могут показаться легким и весьма приятным бризом.

Ветер всегда играл немаловажную роль в жизни человека. Он вдохновлял древних писателей на создание мифических сюжетов, легенд и сказок. Именно благодаря ветру у человека появилась возможность преодолевать значительные расстояния по морю (с помощью парусников) и по воздуху (посредством воздушных шаров). Ветер задействован и в «построении» многих земных ландшафтов. Так, он переносит с места на место миллионы песчинок, формируя тем самым уникальные эоловые формы рельефа: дюны, барханы и песчаные гряды.

В то же время, ветра способны не только созидать, но и разрушать. Их градиентные колебания способны спровоцировать потерю контроля над самолетом. Сильный ветер существенно расширяет масштабы лесных пожаров, а на крупных водоемах рождает огромные волны, которые разрушают дома и уносят жизни людей. Вот почему так важно изучать и измерять ветер.

Основные параметры ветра

Принято выделять четыре основных параметра ветра: сила, скорость, направление и продолжительность. Все они измеряются посредством специальных приспособлений. Силу и скорость ветра определяют при помощи так называемого анемометра, направление - с помощью флюгера.

Исходя из параметра продолжительности, метеорологи выделяют шквалы, бризы, штормы, ураганы, тайфуны и прочие типы ветров. Направление ветра определяется по той стороне горизонта, откуда он дует. Для удобства их сокращают следующими латинскими буквами:

  • N (северный).
  • S (южный).
  • W (западный).
  • E (восточный).
  • C (затишье).

Наконец, скорость ветра измеряется на высоте 10 метров при помощи анемометров или специальных радаров. Причем продолжительность таких измерений в разных странах мира неодинакова. Например, на американских метеорологических станциях учитывается усредненная скорость воздушных потоков за 1 минуту, в Индии - за 3 минуты, а во многих европейских странах - за 10 минут. Классический инструмент представления данных по скорости и силе ветра - это так называемая шкала Бофорта. Как и когда она появилась?

Кто такой Фрэнсис Бофорт?

Фрэнсис Бофорт (1774-1857) - ирландский моряк, военный адмирал и картограф. Он родился в небольшом городке Ан-Уавь в Ирландии. Окончив школу, 12-летний мальчик продолжил свое обучение под предводительством известного профессора Ушера. В этот период он впервые проявил незаурядные способности к изучению «морских наук». В подростковом возрасте он поступил на службу в восточно-индийскую компанию и принял активное участие в съемке Яванского моря.

Следует отметить, что Фрэнсис Бофорт рос довольно смелым и отважным парнем. Так, во время крушения судна в 1789 году юноша проявил огромную самоотверженность. Растеряв всю свою еду и личные вещи, он сумел спасти ценные инструменты команды. В 1794 году Бофорт участвовал в морском сражении против французов и героически буксировал подбитое вражеским огнем судно.

Разработка ветровой шкалы

Фрэнсис Бофорт был на редкость трудолюбив. Каждый день он просыпался в пять часов утра и сразу же принимался за работу. Бофорт был значимым авторитетом среди военных и моряков. Однако всемирную славу он приобрел благодаря своей уникальной разработке. Будучи еще мичманом, любознательный юноша вел ежедневный дневник наблюдений за погодой. Позже все эти наблюдения помогли ему составить специальную шкалу ветров. В 1838 году она была официально утверждена британским адмиралтейством.

В честь знаменитого ученого и картографа названо одно из морей, остров в Антарктике, река и мыс в северной Канаде. А еще Фрэнсис Бофорт прославился тем, что создал полиалфавитный военный шифр, также получивший его имя.

Шкала Бофорта и ее особенности

Шкала представляет собой наиболее раннюю классификацию ветров по их силе и скорости. Она была разработана на основе метеорологических наблюдений в условиях открытого моря. Изначально классическая шкала ветров Бофорта является двенадцатибалльной. Лишь в середине ХХ века она была расширена до 17-ти уровней, чтобы можно было различать ветра ураганной силы.

Сила ветра по шкале Бофорта определяется по двум критериям:

  1. По его воздействию на различные наземные предметы и объекты.
  2. По степени волнения открытого моря.

Важно отметить, что шкала Бофорта не позволяет определять продолжительность и направление воздушных потоков. В ней содержится подробная классификация ветров по их силе и скорости.

Шкала Бофорта: таблица для суши

Ниже представлена таблица с подробным описанием воздействия ветра на наземные предметы и объекты. Шкала, разработанная ирландским ученым Ф. Бофортом, состоит из двенадцати уровней (баллов).

Шкала Бофорта для суши

Сила ветра

(в баллах)

Скорость ветра

Воздействие ветра на предметы
0 0-0,2 Полный штиль. Дым поднимается вверх строго вертикально
1 0,3-1,5 Дым немного отклоняется в сторону, однако флюгеры остаются неподвижными
2 1,6-3,3 Начинает шелестеть листва на деревьях, ветер ощущается кожей лица
3 3,4-5,4 Развеваются полотнища флагов, колышутся листья и мелкие ветки на деревьях
4 5,5-7,9 Ветер поднимает с земли пыль и мелкий мусор
5 8,0-10,7 Ветер можно «пощупать» руками. Колышутся тонкие стволы маленьких деревьев.
6 10,8-13,8 Колышутся крупные ветки, «гудят» провода
7 13,9-17,1 Раскачиваются стволы деревьев
8 17,2-20,7 Ломаются ветки деревьев. Идти против ветра становится весьма трудно
9 20,8-24,4 Ветер разрушает навесы и крыши зданий
10 24,5-28,4 Существенные разрушения, ветер может вырывать деревья из земли
11 28,5-32,6 Большие разрушения на больших площадях
12 более 32,6 Огромные повреждения домов и построек. Ветер уничтожает растительность

Таблица Бофорта по состоянию моря

В океанографии существует такое понятие, как состояние моря. Оно включает в себя высоту, периодичность и силу морских волн. Ниже представлена шкала Бофорта (таблица), которая поможет определить силу и скорость ветра, исходя из этих признаков.

Шкала Ф.Бофорта для открытого океана

Сила ветра

(в баллах)

Скорость ветра

Воздействие ветра на море
0 0-1 Поверхность водного зеркала идеально ровная и гладкая
1 1-3 На поверхности воды появляется мелкое волнение, рябь
2 4-6 Появляются короткие волны до 30 см в высоту
3 7-10 Волны короткие, но отчетливо выраженные, с пеной и «барашками»
4 11-16 Появляются удлиненные волны до 1,5 м в высоту
5 17-21 Волны длинные с повсеместным распространением «барашков»
6 22-27 Образуются крупные волны с брызгами и пенистыми гребнями
7 28-33 Большие волны до 5 м в высоту, пена ложится полосами
8 34-40 Высокие и длинные волны с мощными брызгами (до 7,5 м)
9 41-47 Образуются высокие (до десяти метров) волны, гребни которых опрокидываются и рассыпаются брызгами
10 48-55 Очень высокие волны, которые опрокидываются с сильным грохотом. Вся поверхность моря покрыта белой пеной
11 56-63 Вся водная поверхность покрывается длинными белесыми хлопьями пены. Видимость существенно ограничена
12 свыше 64 Ураган. Видимость объектов очень плохая. Воздух перенасыщен брызгами и пеной

Таким образом, благодаря шкале Бофорта люди могут наблюдать за ветром и оценивать его силу. Это дает возможность составлять максимально точные прогнозы погоды.

Определение силы, скорости и направления ветра, дальности видимости, направления и скорости течений крайне важно при планировании и выполнении погружений в открытом море и прибрежной зоне. Бороться с силой природы бессмысленно и порой крайне опасно, поэтому всегда нужно учитывать влияние природных явлений, таких как течение и ветер, при планировани погружений. Приведённая ниже информация поможет Вам оценить силу некоторых явлений природы для того, что бы учесть их при планировании погружений.

Сила и скорость ветра.

Ветер — это перемещение потока воздуха параллельно земной поверхности, возникающее в результате неравномерного распределения тепла и атмосферного давления, и направленное из зоны высокого давления в зону низкого давления.

Ветер характеризуется скоростью (силой) и направлением. Н аправление определяется сторонами горизонта и измеряется градусами. Скорость ветра измеряется в метрах в секудну и километрах в час. Сила ветра измеряется в баллах.

Шкала бофорта — условная шкала для визуального определения и записи скорости (силы) ветра в баллах. Первоначально она была разработана английским адмиралом Френсисом Бофортом в 1806 г. для определения силы ветра по характеру его проявления на море. С 1874 г. принята для повсеместного (на суше и на море) использования в международной синоптической практике. В последующие годы менялась и уточнялась. За ноль баллов было принято состояние полного штиля на море. Изначально система была тринадцатибальная (0-12). В 1946 г. шкалу увеличили до семнадцати (0-17). Сила ветра в шкале определяется по взаимодействию ветра с различными предметами. В последние годы силу ветра чаще оценивают по скорости, измеряемой в метрах в секунду у земной поверхности, на высоте порядка 10 метров над открытой, ровной поверхностью.
В таблице 1 приведена шкала Бофорта, принятая в 1963 году Всемирной метеорологической организацией. Шкала волнения на море — девятибальная (параметры волнения даны для большой морской акватории, на малых акваториях волнение меньше). Приборов для измерения высоты волны не существует, поэтому и волнение моря в баллах определяется достаточно условно.

Сила ветра в баллах по шкале Бофорта и волнение на море.

таблица 1

Баллы Словесное обозначение силы ветра Скорость ветра Действие ветра
м/с км/ч На суше На море (баллы, волнение, характеристика, высота и длина волны)
0 Штиль 0-0,2 менее 1 Полное отсутствие ветра, дым поднимается вертикально, листья деревьев не шевелятся. 0. Волнение отсутствует.
Зеркально гладкое море, практически неподвижное. Над поверхностью воды может наблюдаться дымка. Край моря сливается с небом так, что границы не видно.
1 Тихий 0,3-1,5 2-5 Дым слегка отклоняется от вертикали, листья деревьев неподвижны. 1. Слабое волнение.
На море лёгкая рябь, море по-прежнему может сливаться с небом. Высота волн до 0,1 м., длина 0,3 м.
2 Лёгкий 1,6-3,3 6-11 Ветер чувствуется лицом, листья временами слабо шелестят, флюгер начинает двигаться. 2. Слабое волнение.
Гребни не опрокидываются и кажутся стекловидными. На море короткие волны высотой до 0,3 м., длиной 1-2 м.
3 Слабый 3,4-5,4 12-19 Листья и тонкие ветки деревьев с листвой непрерывно колеблются, колышутся лёгкие флаги. Дым как бы слизывается с верхушки трубы (при скорости более 4 м/сек). 3. Легкое волнение
Короткие, хорошо выраженные волны. Гребни, опрокидываясь, образуют стекловидную пену, изредка образуются маленькие белые барашки. Средняя высота волн до 0,6 м., длина — 6 м.
4 Умернный 5,5-7,9 20-28 Ветер поднимает пыль, бумажки. Качаются тонкие ветви деревьев и без листвы. Дым перемешивается в воздухе, теряя форму. Это лучший ветер для работы ветродвигателя. 4. Умеренное волнение.
Волны удлинённые, белые барашки видны во многих местах. Высота волн 1-1,5 м., длина до 15 м.
5 Свежий 8,0-10,7 29-38 Качаются ветки и тонкие стволы деревьев, ветер чувствуется рукой. Вытягивает большие флаги. Свистит в ушах. 4. Неспокойное море.
Хорошо развитые в длину, но не очень крупные волны, повсюду видны белые барашки (в отдельных случаях образуются брызги). Высота волн 1,5-2 м., длина — 30 м.
6 Сильный 10,8-13,8 39-49 Качаются толстые сучья деревьев, тонкие деревья гнутся, гудят телеграфные провода, зонтики используются с трудом. 5. Крупное волнение.
Начинают образовываться крупные волны. Белые пенистые гребни занимают значительные площади. Образуется водяная пыль. Высота волн — 2-3 м., длина — 50 м.
7 Крепкий 13,9-17,1 50-61 Качаются стволы деревьев, гнутся большие ветки, трудно идти против ветра. 6. Сильное волнение.
Волны громоздятся, гребни срываются, пена ложится полосами по ветру. Высота волн до 3-5 м., длина — 70 м.
8 Очень крепкий 17,2-20,7 62-74 Ломаются тонкие и сухие сучья деревьев, говорить на ветру нельзя, идти против ветра очень трудно. 7. Очень сильное волнение.
Умеренно высокие, длинные волны. По краям гребней начинают взлетать брызги. Полосы пены ложатся рядами по направлению ветра. Высота волн 5-7 м., длина — 100 м.
9 Шторм 20,8-24,4 75-88 Гнутся большие деревья, ломает большие ветки. Ветер срывает черепицу с крыш. 8. Очень сильное волнение.
Высокие волны. Пена широкими плотными полосами ложится по ветру. Гребни волн начинают опрокидываться и рассыпаться в брызги, которые ухудшают видимость. Высота волн до 10 м., длина до 150 м.
10 Сильный шторм 24,5-28,4 89-102 На суше бывает редко. Значительные разрушения строений, ветер валит деревья и вырывает их с корнем. 8. Очень сильное волнение.
Очень высокие волны с длинными загибающимися вниз гребнями. Образующаяся пена выдувается ветром большими хлопьями в виде густых белых полос. Поверхность моря белая от пены. Сильный грохот волн подобен ударам. Видимость плохая. Высота волн — 8-11 м., длина — 200 м.
11 Жестокий шторм 28,5-32,6 103-117 Наблюдается очень редко. Сопровождается большими разрушениями на значительных пространствах. 9. Исключительно высокие волны.
Суда небольшого и среднего размера временами скрываются из вида. Море всё покрыто длинными белыми хлопьями пены, располагающимися по ветру. Края волн повсюду сдуваются в пену. Видимость плохая. Высота волн до 16 м., длина до 250 м.
12 Ураган ≥32,7 более 117 Опустошительные разрушения. Отдельные порывы ветра достигают скорости 50—60 м/сек. Ураган может случиться перед сильной грозой. 9. Исключительное волнение.
Воздух наполнен пеной и брызгами. Море всё покрыто полосами пены. Очень плохая видимость. Высота волн >16 м., длина — 300 м.

Шкала дальности видимости.

Видимость — это предельное расстояние, на котором днём обнаруживаются предметы, а ночью навигационные огни. Видимость определяется прозрачностью атмосферы, зависит от погодных условий и характеризуется дальностью видимости. Ниже приведена таблица определения дальности видимости в светлое время суток.

Расстояние Характеристика видимости
до 1/4 кабельтова до 46 м Очень плохая видимость, густой туман или пурга.
до 1 кабельтова до 185 м Плохая видимость, густой туман или мокрый снег.
2-3 кабельтова 370-550 м Плохая видимость, туман,мокрый снег.
1/2 мили до 1 км Дымка, густая мгла, снег.
1/2-1 миля 1-1,85 км Средняя видимость, снег или сильный дождь.
1-2 мили 1,85-3,7 км Дымка, мгла или дождь.
2-5 миль 3,7-9,5 км Лёгкая дымка, мгла, слабый дождь.
5-11 миль 9,5-20 км Хорошая видимость, виден горизонт.
11-27 миль 20-50 км Очень хорошая видимость, горизонт виден резко.
более 27 миль более 50 км Исключительная видимость, горизонт виден очень чётко, воздух прозрачный.