Пaльтo

Применение лазеров в медицине. Применение лазерных технологий в медицине

лазер глаз медицина зрение

Лазеры, применяемые в медицине

С практической точки зрения, особенно для использования в медицине, лазеры классифицируют по типу активного материала, по способу питания, длине волны и мощности генерируемого излучения.

Активной средой может быть газ, жидкость или твердое тело. Формы активной среды также могут быть различными. Чаще всего для газовых лазеров используются стеклянные или металлические цилиндры, заполненные одним или несколькими газами. Примерно так же обстоит дело и с жидкими активными средами, хотя часто встречаются прямоугольные кюветы из стекла или кварца. Жидкостные лазеры -- это лазеры, в которых активной средой являются растворы определенных соединений органических красителей в жидком растворителе (воде, этиловом или метиловом спиртах и т.п.).

В газовых лазерах активной средой являются различные газы, их смеси или пары металлов. Эти лазеры разделяются на газоразрядные, газодинамические и химические. В газоразрядных лазерах возбуждение осуществляется электрическим разрядом в газе, в газодинамических -- используется быстрое охлаждение при расширении предварительно нагретой газовой смеси, а в химических -- активная среда возбуждается за счет энергии, освобождающейся при химических реакциях компонентов среды. Спектральный диапазон газовых лазеров значительно шире, чем у всех остальных типов лазеров. Он перекрывает область от 150 нм до 600 мкм.

Эти лазеры имеют высокую стабильность параметров излучения по сравнению с другими типами лазеров.

Лазеры на твердых телах имеют активную среду в форме цилиндрического или прямоугольного стержня. Таким стержнем чаще всего является специальный синтетический кристалл, например рубин, александрит, гранат или стекло с примесями соответствующего элемента, например эрбия, гольмия, неодима. Первый действующий лазер работал на кристалле рубина.

Разновидностью активного материала в виде твердого тела являются также полупроводники. В последнее время благодаря своей малогабаритности и экономичности полупроводниковая промышленность очень бурно развивается. Поэтому полупроводниковые лазеры выделяют в отдельную группу.

Итак, соответственно типу активного материала выделяют следующие типы лазеров:

Газовые;

Жидкостные;

На твердом теле (твердотельные);

Полупроводниковые.

Тип активного материала определяет длину волны генерируемого излучения. Различные химические элементы в разных матрицах позволяют выделить сегодня более 6000 разновидностей лазеров. Они генерируют излучение от области так называемого вакуумного ультрафиолета (157 нм), включая видимую область (385-760 нм), до дальнего инфракрасного (> 300 мкм) диапазона. Все чаще понятие "лазер", вначале данное для видимой области спектра, переносится также на другие области спектра.

Таблица 1 - лазеры применяемые в медицине.

Тип лазера

Агрегатное состояние активного вещества

Длина волны, нм

Диапазон излучения

Инфракрасный

YAG:Er YSGG:Er YAG:Ho YAG:Nd

Твердое тело

2940 2790 2140 1064/1320

Инфракрасный

Полупроводниковый, например арсенид галлия

Твердое тело (полупроводник)

От видимого до инфракрасного

Рубиновый

Твердое тело

Гелий-неоновый (He-Ne)

Зеленый, ярко-красный, инфракрасный

На красителях

Жидкость

350-950 (перестраиваемая)

Ультрафиолет - инфракрасный

На парах золота

На парах меди

Зеленый/желтый

Аргоновый

Голубой, зеленый

Эксимерный: ArF KrF XeCI XeF

Ультрафиолет

Например, для более коротковолнового излучения, чем инфракрасное, используется понятие "рентгеновские лазеры", а для более длинноволнового, чем ультрафиолетовое, -- понятие "лазеры, генерирующие миллиметровые волны"

В газовых лазерах используется газ или смесь газов в трубе. В большинстве газовых лазеров используется смесь гелия и неона (HeNe), с первичным выходным сигналом в 632,8 нм (нм = 10~9 м) видимого красного цвета. Впервые такой лазер был разработан в 1961 году и стал предвестником целого семейства газовых лазеров. Все газовые лазеры довольно похожи по конструкции и свойствам.

Например, С02-газовый лазер излучает длину волны 10,6 мкм в дальней инфракрасной области спектра. Аргоновый и криптоновый газовые лазеры работают с кратной частотой, излучая преимущественно в видимой части спектра. Основные длины волн излучения аргонового лазера -- 488 и 514 нм.

Твердотельные лазеры используют лазерное вещество, распределенное в твердой матрице. Одним из примеров является неодим (Кё)-лазер. Термин АИГ является сокращением для кристалла -- алюмоиттриевый гранат, который служит как носитель для ионов неодима. Этот лазер излучает инфракрасный луч с длиной волны 1,064 мкм. Вспомогательные устройства, которые могут быть как внутренними, так и внешними по отношению к резонатору, могут использоваться для преобразования выходного луча в видимый или ультрафиолетовый диапазон. В качестве лазерных сред могут использоваться различные кристаллы с разными концентрациями ионов-активаторов: эрбия (Ег3+), гольмия (Но3+), тулия (Тт3+).

Выберем из этой классификации лазеры, наиболее пригодные и безопасные для медицинского использования. К более известным газовым лазерам, используемым в стоматологии, относятся С02-лазеры, He-Ne-лазеры (гелий-неоновые лазеры). Представляют интерес также газовые эксимерные и аргоновые лазеры. Из твердотельных лазеров наиболее популярным в медицине является лазер на YAG:Er, имеющий в кристалле эрбиевые активные центры. Все чаще обращаются к лазеру на YAG:Ho (с гольмиевыми центрами). Для диагностического и терапевтического применения используется большая группа как газовых, так и полупроводниковых лазеров. В настоящее время в производстве лазеров в качестве активной среды используется свыше 200 видов полупроводниковых материалов.

Таблица 2 - характеристики разнообразных лазеров.

Лазеры можно классифицировать по виду питания и режиму работы. Здесь выделяются устройства непрерывного или импульсного действия. Лазер непрерывного действия генерирует излучение, выходная мощность которого измеряется в ваттах или милливаттах.

При этом степень энергетического воздействия на биоткань характеризуется:

Плотностью мощности - отношение мощности излучения к площади сечения лазерного пучка р = P/s].

Единицы измерения в лазерной медицине -- [Вт/см 2 ], [мВт/см 2 ];

Дозой излучения П, равной отношению произведения мощности излучения [Р и времени облучения к площади сечения лазерного пучка. Выражается в [Вт * с/см 2 ];

Энергией [Е= Рt] -- произведение мощности на время. Единицы измерения -- [Дж], т.е. [Вт с].

С точки зрения мощности излучения (непрерывной или средней) медицинские лазеры делятся на:

Лазеры малой мощности: от 1 до 5 мВт;

Лазеры средней мощности: от 6 до 500 мВт;

Лазеры большой мощности (высокоинтенсивные): более 500 мВт. Лазеры малой и средней мощности причисляют к группе так называемых биостимулирующих лазеров (низкоинтенсивных). Биостимулирующие лазеры находят все более широкое терапевтическое и диагностическое использование в экспериментальной и клинической медицине.

С точки зрения режима работы лазеры делятся на:

Режим излучения непрерывный (волновые газовые лазеры);

Режим излучения смешанный (твердотельные и полупроводниковые лазеры);

Режим с модуляцией добротности (возможен для всех типов лазеров).

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

1. Лазеры и их применение в медицине

2. Применение высокоинтенсивного лазерного излучения в хирургии (общие принципы)

3. Световой пробой

Заключение

Список использованной литературы

Введение

Лазеры или оптические квантовые генераторы - это современные источники когерентного излучения, обладающие целым рядом уникальных свойств. Создание лазеров явилось одним из самых замечательных достижений физики второй половины XX века, которое привело к революционным изменениям во многих областях науки и техники. К настоящему времени создано большое количество лазеров с различными характеристиками - газовых, твердотельных, полупроводниковых, излучающих свет в различных оптических диапазонах. Лазеры могут работать в импульсном и непрерывном режимах. Мощность излучения лазеров может изменяться в пределах от долей милливатта до 10 12 -10 13 Вт (в импульсном режиме). Лазеры находят широкое применение в военной технике, в технологии обработки материалов, в медицине, оптических системах навигации, связи и локации, в прецизионных интерференционных экспериментах, в химии, просто в быту и т. д.

Одним из важнейших свойств лазерного излучения является чрезвычайно высокая степень его монохроматичности, недостижимая в излучении нелазерных источников. Это и все другие уникальные свойства лазерного излучения возникают в результате согласованного, кооперативного испускания световых квантов многими атомами рабочего вещества.

Чтобы понять принцип работы лазера, нужно более внимательно изучить процессы поглощения и излучения атомами квантов света. Атом может находиться в различных энергетических состояниях с энергиями E 1 , E 2 и т. д. В теории Бора эти состояния называются стабильными. На самом деле стабильным состоянием, в котором атом в отсутствие внешних возмущений может находиться бесконечно долго, является только состояние с наименьшей энергией. Это состояние называют основным. Все другие состояния нестабильны. Возбужденный атом может пребывать в этих состояниях лишь очень короткое время, порядка 10 - 8 с, после этого он самопроизвольно переходит в одно из низших состояний, испуская квант света, частоту которого можно определить из второго постулата Бора. Излучение, испускаемое при самопроизвольном переходе атома из одного состояния в другое, называют спонтанным. На некоторых энергетических уровнях атом может пребывать значительно большее время, порядка 10 - 3 с. Такие уровни называются метастабильными.

Переход атома в более высокое энергетическое состояние может происходить при резонансном поглощении фотона, энергия которого равна разности энергий атома в конечном и начальном состояниях.

Переходы между энергетическими уровнями атома не обязательно связаны с поглощением или испусканием фотонов. Атом может приобрести или отдать часть своей энергии и перейти в другое квантовое состояние в результате взаимодействия с другими атомами или столкновений с электронами. Такие переходы называются безизлучательными.

В 1916 году А. Эйнштейн предсказал, что переход электрона в атоме с верхнего энергетического уровня на нижний может происходить под влиянием внешнего электромагнитного поля, частота которого равна собственной частоте перехода. Возникающее при этом излучение называют вынужденным илииндуцированным. Вынужденное излучение обладает удивительным свойством. Оно резко отличается от спонтанного излучения. В результате взаимодействия возбужденного атома с фотоном атом испускает еще один фотон той же самой частоты, распространяющийся в том же направлении. На языке волновой теории это означает, что атом излучает электромагнитную волну, у которой частота, фаза, поляризация и направление распространения точно такие же, как и у первоначальной волны. В результате вынужденного испускания фотонов амплитуда волны, распространяющейся в среде, возрастает. С точки зрения квантовой теории, в результате взаимодействия возбужденного атома с фотоном, частота которого равна частоте перехода, появляются два совершенно одинаковых фотона-близнеца.

Именно индуцированное излучение является физической основой работы лазеров.

1 . Лазеры и их применение в медицине

Несмотря на общую природу световых и радиоволн, многие годы оптика и радиоэлектроника развивались самостоятельно, независимо друг от друга. Казалось, что источники света - возбужденные частицы и генераторы радиоволн - имеют мало общего. Лишь с середины XX столетия появились работы по созданию молекулярных усилителей и генераторов радиоволн, которые положили начало новой самостоятельной области физики - квантовой электронике.

Квантовая электроника изучает методы усиления и генерации электромагнитных колебаний с использованием вынужденного излучения квантовых систем. Достижения в этой области знаний находят все большее применение в науке и технике. Ознакомимся с некоторыми явлениями, лежащими в основе квантовой электроники и работы оптических квантовых генераторов - лазеров.

Лазеры представляют собой источники света, работающие на базе процесса вынужденного (стимулированного, индуцированного) испускания фотонов возбужденными атомами или молекулами под воздействием фотонов излучения, имеющих ту же частоту. Отличительной чертой этого процесса является то, что фотон, возникающий при вынужденном испускании, идентичен вызвавшему его появление внешнему фотону по частоте, фазе, направлению и поляризации. Это определяет уникальные свойства квантовых генераторов: высокая когерентность излучения в пространстве и во времени, высокая монохроматичность, узкая направленность пучка излучения, огромная концентрация потока мощности и способность фокусироваться в очень малые объемы. Лазеры создаются на базе различных активных сред: газообразной, жидкой или твердой. Они могут давать излучение в весьма широком диапазоне длин волн - от 100 нм (ультрафиолетовый свет) до 1.2 мкм (инфракрасное излучение) - и могут работать как в непрерывном, так и в импульсном режимах.

Лазер состоит из трех принципиально важных узлов: излучателя, системы накачки и источника питания, работа которых обеспечивается с помощью специальных вспомогательных устройств.

Излучатель предназначен для преобразования энергии накачки (перевода гелий-неоновой смеси 3 в активное состояние) в лазерное излучение и содержит оптический резонатор, представляющий собой в общем случае систему тщательно изготовленных отражающих, преломляющих и фокусирующих элементов, во внутреннем пространстве которого возбуждается и поддерживается определенный тип электромагнитных колебаний оптического диапазона. Оптический резонатор должен иметь минимальные потери в рабочей части спектра, высокую точность изготовления узлов и их взаимной установки.

Создание лазеров оказалось возможным в результате реализации трех фундаментальных физических идей: вынужденного излучения, создания термодинамически неравновесной инверсной населенности энергетических уровней атомов и использования положительной обратной связи.

Возбужденные молекулы (атомы) способны излучать фотоны люминесценции. Такое излучение является спонтанным процессом. Оно случайно и хаотично по времени, частоте (могут быть переходы между разными уровнями), по направлению распространения и поляризации. Другое излучение - вынужденное, или индуцированное - возникает при взаимодействии фотона с возбужденной молекулой, если энергия фотона равна разности соответствующих уровней энергии. При вынужденном (индуцированном) излучении число переходов, совершаемых в секунду, зависит от числа фотонов, попадающих в вещество за это же время, т. е. от интенсивности света, а также от числа возбужденных молекул. Другими словами, число вынужденных переходов будет тем больше, чем выше населенность соответствующих возбужденных энергетических состояний.

Индуцированное излучение тождественно падающему во всех отношениях, в том числе и по фазе, поэтому можно говорить о когерентном усилении электромагнитной волны, что используется в качестве первой основополагающей идеи в принципах лазерной генерации.

Вторая идея, реализуемая при создании лазеров, заключается в создании термодинамически неравновесных систем, в которых вопреки закону Больцмана, на более высоком уровне находится больше частиц, чем на более низком. Состояние среды, в котором хотя бы для двух энергетических уровней оказывается, что число частиц с большей энергией превосходит число частиц с меньше энергией, называется состоянием с инверсной населенностью уровней, а среда - активной. Именно активная среда, в которой фотоны взаимодействуют с возбужденными атомами, вызывая их вынужденные переходы на более низкий уровень с испускание квантов индуцированного (вынужденного) излучения, является рабочим веществом лазера. Состояние с инверсной населенностью, уровней формально получается из распределения Больцмана для Т < О К, поэтому иногда называется состоянием с "отрицательной" температурой. По мере распространения света в активной среде интенсивность его возрастает, имеет место явление, обратное поглощению, т. е. усиление света. Это означает, что в законе Бугера kX < 0, поэтому инверсная населенность соответствует среде с отрицательным показателем поглощения.

Состояние с инверсной населенностью можно создать, отбирая частицы с меньшей энергией или специально возбуждая частицы, например, светом или электрическим разрядом. Само по себе состояние с отрицательной температурой долго не существует.

Третья идея, используемая в принципах лазерной генерации, возникла в радиофизике и заключается в использовании положительной обратной связи. При ее осуществлении часть генерируемого вынужденного излучения остается внутри рабочего вещества и вызывает вынужденное излучение все новыми и новыми возбужденными атомами. Для реализации такого процесса активную среду помещают в оптический резонатор, состоящий обычно из двух зеркал, подобранных так, чтобы возникающее в нем излучение многократно проходило через активную среду, превращая ее в генератор когерентного вынужденного излучения.

Первый такой генератор в диапазоне СВЧ (мазер) был сконструирован в 1955 г. независимо советскими учеными Н.Г. Басоным и А.М. Прохоровым и американскими - Ч. Таунсом и др. Так как работа этого прибора была основана на вынужденном излучении молекул аммиака, то генератор был назван молекулярным.

В 1960 г. был создан первый квантовый генератор видимого диапазона излучения - лазер с кристаллом рубина в качестве рабочего вещества (активной среды). В том же году был создан газовый гелий-неоновый лазер. Все огромное многообразие созданных в настоящее время лазеров можно классифицировать по видам рабочего вещества: различают газовые, жидкостные, полупроводниковые и твердотельные лазеры. В зависимости от типа лазера энергия для создания инверсной населенности сообщается разными способами: возбуждение очень интенсивным светом - "оптическая накачка", электрическим газовым разрядом, в полупроводниковых лазерах - электрическим током. По характеру свечения лазеры подразделяют на импульсные и непрерывные.

Рассмотрим принцип работы твердотельного рубинового лазера. Рубин - это кристалл окиси алюминия Аl 2 0 3 , содержащий в виде примеси примерно 0,05 % ионов хрома Сг 3 + . Возбуждение ионов хрома осуществляют методом оптической накачки с помощью импульсных источников света большой мощности. В одной из конструкций применяют трубчатый отражатель, имеющий в сечении форму эллипса. Внутри отражателя помещены прямая ксеноновая импульсная лампа и рубиновый стержень, расположенные вдоль линий, проходящих через фокусы эллипса (рис. 1). Внутренняя поверхность алюминиевого отражателя хорошо отполирована или посеребрена. Основное свойство эллиптического отражателя заключается в том, что свет, вышедший из одного его фокуса (ксеноновой лампы) и отраженный от стенок, попадает в другой фокус отражателя (рубиновый стержень).

Рубиновый лазер работает по трехуровневой схеме (рис. 2 а). В результате оптической накачки ионы хрома переходят с основного уровня 1 в короткоживущее возбужденное состояние З. Затем происходит безизлучательный переход в долгоживущее (метастабильное) состояние 2, с которого вероятность спонтанного излучательного перехода относительно мала. Поэтому происходит накопление возбужденных ионов в состоянии 2 и создается инверсная населенность между уровнями 1 и 2. В обычных условиях переход со 2-го на 1-й уровень происходит спонтанно и сопровождается люминесценцией с длиной волны 694,3 нм. В резонаторе лазера есть два зеркала (см. рис. 1), одно из которых имеет коэффициент отражения R интенсивности отраженного и падающего на зеркало света), другое зеркало полупрозрачное и пропускает часть падающего на него излучения {R < 100 %). Кванты люминесценции в зависимости от направления их движения либо вылетают из боковой поверхности рубинового стержня и теряются, либо, многократно отражаясь от зеркал, сами вызывают вынужденные переходы. Таким образом, пучок, перпендикулярный зеркалам, будет иметь наибольшее развитие и выходит наружу через полупрозрачное зеркало. Такой лазер работает в импульсном режиме. лазер пробой медицинское биологическое

Наряду с рубиновым лазером, работающим по трехуровневой схеме, широкое распространение получили четырехуровневые схемы лазеров на ионах редкоземельных элементов (неодим, самарий и др.), внедренных в кристаллическую или стеклянную матрицы (рис. 24, б). В таких случаях инверсная населенность создается между двумя возбужденными уровнями: долгоживущий уровнем 2 и короткоживущим уровнем 2".

Очень распространенным газовым лазером является гелий-неоновый, возбуждение в котором возникает при электрическом разряде. Активной средой в нем служит смесь гелия и неона в соотношении 10:1 и давлении около 150 Па. Излучающими являются атомы неона, атомы гелия играют вспомогательную роль. На рис. 24, в показаны энергетические уровни атомов гелия и неона. Генерация происходит при переходе между 3 и 2 уровнями неона. Для того чтобы создать между ними инверсную населенность, необходимо заселить уровень 3 и опустошить уровень 2. Заселение уровня 3 происходит с помощью атомов гелия. При электрическом разряде электронным ударом происходит возбуждение атомов гелия в долгоживущее состояние (со временем жизни около 10 3 с). Энергия этого состояния очень близка к энергии уровня 3 неона, поэтому при соударении возбужденного атома гелия с невозбужденным атомом неона происходит передача энергии, в результате чего заселяется уровень 3 неона. Для чистого неона время жизни на этом уровне мало и атомы переходят на уровни 1 или 2, реализуется больцмановское распределение. Опустошение уровня 2 неона происходит в основном за счет спонтанного перехода его атомов в основное состояние при соударениях со стенками разрядной трубки. Так обеспечивается стационарная инверсная населенность уровней 2 и 3 неона.

Основным конструктивным элементом гелий-неонового лазер (рис. 3) является газоразрядная трубка диаметром около 7 мм. В трубку вмонтированы электроды для создания газового разряда и возбуждения гелия. На концах трубки под углом Брюстера расположены окна, благодаря которым излучение оказывается плоскополяризованным. Плоскопараллельные зеркала резонатора монтируются вне трубки, одно из них полупрозрачное (коэффициент отражения R < 100 %). Таким образом, пучок вынужденного излучения выходит наружу через полупрозрачное зеркало. Это лазер непрерывного действия.

Зеркала резонатора делают с многослойными покрытиями, и вследствие интерференции создается необходимый коэффициент отражения для заданной длины волны. Чаще всего используются гелий-неоновые лазеры, излучающие красный свет с длиной волны 632,8 нм. Мощность таких лазеров небольшая, она не превышает 100 мВт.

Применение лазеров основано на свойствах их излучения: высокая монохроматичность (~ 0,01 нм), достаточно большая мощность, узость пучка и когерентность.

Узость светового пучка и малая его расходимость позволили использовать лазеры для измерения расстояния между Землей и Луной (получаемая точность - около десятков сантиметров), скорости вращения Венеры и Меркурия и др.

На когерентности лазерного излучения основано их применение в голографии. На основе гелий-неонового лазера с использованием волоконной оптики разработаны гастроскопы, которые позволяют голографически формировать объемное изображение внутренней полости желудка.

Монохроматичность лазерного излучения очень удобна при возбуждении спектров комбинационного рассеяния света атомами и молекулами.

Широкое применение лазеры нашли в хирургии, стоматологии, офтальмологии, дерматологии, онкологии. Биологические эффекты лазерного излучения зависят как от свойств биологического материала, так и от свойств лазерного излучения.

Все лазеры, используемые в медицине, условно подразделяются на 2 вида: низкоинтенсивные (интенсивность не превышает 10 Вт/см 2 , чаще всего составляет около 0,1 Вт/см 2) - терапевтические и высокоинтенсивные - хирургические. Интенсивность наиболее мощных лазеров может достигать 10 14 Вт/см 2 , в медицине обычно используются лазеры с интенсивностью 10 2 - 10 6 Вт/см 2 .

Низкоинтенсивные лазеры - это такие, которые не вызывают заметного деструктивного действия на ткани непосредственно во время облучения. В видимой и ультрафиолетовой областях спектра их эффекты обусловлены фотохимическими реакциями и не отличаются от эффектов, вызываемых монохроматическим светом, полученным от обычных, некогерентных источников. В этих случаях лазеры являются просто удобными монохроматическими источниками света, обеспечивающими точную локализацию и дозированность воздействия. Примерами может служить использование света гелий-неоновых лазеров для лечения трофических язв, ишемической болезни сердца и др., а также криптоновых и др. лазеров для фотохимического повреждения опухолей в фотодинамической терапии.

Качественно новые явления наблюдаются при использовании видимого или ультрафиолетового излучения высокоинтенсивных лазеров. В лабораторных фотохимических экспериментах с обычными источниками света, а также в природе при действии солнечного света обычно осуществляется однофотонное поглощение. Об этом говорится во втором законе фотохимии, сформулированном Штарком и Эйнштейном: каждая молекула, участвующая в химической реакции, идущей под действием света, поглощает один квант излучения, который вызывает реакцию. Однофотонность поглощения, описываемая вторым законом, выполняется потому, что при обычных интенсивностях света практически невозможно одновременное попадание в молекулу, находящуюся в основном состоянии, двух фотонов. Если бы такое событие осуществилось, то выражение приобрело бы вид:

2hv = E t - E k ,

что означало бы суммирование энергии двух фотонов для перехода молекулы из энергетического состояния E k в состояние с энергией Е г. Не происходит также поглощения фотонов электронно-возбужденными молекулами, так как их время жизни мало, а обычно используемые интенсивности облучения невелики. Поэтому концентрация электронно-возбужденных молекул низка, и поглощение ими еще одного фотона чрезвычайно маловероятно.

Однако если увеличить интенсивность света, то становится возможным двухфотонное поглощение. Например, облучение растворов ДНК высокоинтенсивным импульсным лазерным излучением с длиной волны около 266 нм приводило к ионизации молекул ДНК, подобной вызываемой у-излучением. Воздействие ультрафиолета с низкой интенсивностью ионизации не вызывало. Установлено, что при облучении водных растворов нуклеиновых кислот или их оснований пикосекундными (длительность импульса 30 пс) или наносекундными (10 нс) импульсами с интенсивностями выше 10 6 Вт/см 2 приводило к электронным переходам, завершавшимся ионизацией молекул. При пикосекундных импульсах (рис. 4, а) заселение высоких электронных уровней происходило по схеме (S 0 -> S1 -> S n), а при hv hv наносекундных (рис. 4, б) - по схеме (S 0 -> S1 -> Т г -> Т п). В обоих случаях молекулы получали энергию, превышающую энергию ионизации.

Полоса поглощения ДНК располагается в ультрафиолетовой области спектра при < 315 нм, видимый свет нуклеиновые кислоты совсем не поглощают. Однако воздействие высокоинтенсивным лазерным излучением около 532 нм переводит ДНК в электронно-возбужденное состояние за счет суммирования энергии двух фотонов (рис. 5).

Поглощение любого излучения приводит к выделению некоторого количества энергии в виде тепла, которое рассеивается от возбужденных молекул в окружающее пространство. Инфракрасное излучение поглощается главным образом водой и вызывает в основном тепловые эффекты. Поэтому излучение высокоинтенсивных инфракрасных лазеров вызывает заметное немедленное тепловое действие на ткани. Под тепловым воздействием лазерного излучения в медицине понимают в основном испарение (резание) и коагуляцию биотканей. Это касается различных лазеров с интенсивностью от 1 до 10 7 Вт/см 2 и с продолжительностью облучения от миллисекунд до нескольких секунд. К ним относятся, например, газовый С 0 2 -лазер (с длиной волны 10,6 мкм), Nd:YAG-лазep (1,064 мкм) и другие. Nd:YAG-лазep - наиболее широко используемый твердотельный четырехуровневый лазер. Генерация осуществляется на переходах ионов неодима (Nd 3+), введенных в кристаллыY 3 Al 5 0 12 иттрий-алюминиевого граната (YAG).

Наряду с нагревом ткани происходит отвод части тепла за счет теплопроводности и тока крови. При температурах ниже 40 °С не обратимые повреждение не наблюдаются. При температуре 60 °С начинается денатурация белков, коагуляция тканей и некроз. При 100-150 °С вызывается обезвоживание и обугливание, а при температурах свыше 300 °С ткань испаряется.

Когда излучение исходит от высокоинтенсивного сфокусированного лазера, количество выделяющегося тепла велико, в ткани возникает температурный градиент. В месте падения луча ткань испаряется, в прилегающих областях происходит обугливание и коагуляция (рис. 6). Фотоиспарение является способом послойного удаления или разрезания ткани. В результате коагуляции завариваются сосуды и останавливается кровотечение. Так сфокусированным лучом непрерывного С 0 2 -лазера () с мощностью около 2 * 10 3 Вт/см 2 пользуются как хирургическим скальпелем для разрезания биологических тканей.

Если уменьшать длительность воздействия (10-10 с) и увеличивать интенсивность (выше 10 6 Вт/см 2), то размеры зон обугливания и коагуляции становятся пренебрежимо малыми. Такой процесс называют фотоабляцией (фотоудалением) и используют для послойного удаления ткани. Фотоабляция возникает при плотностях энергии 0,01-100 Дж/см 2 .

При дальнейшем повышении интенсивности (10 Вт/см и выше) возможен еще один процесс - "оптический пробой". Это явление заключается в том, что из-за очень высокой напряженности электрического поля лазерного излучения (сравнимой с напряженностью внутриатомных электрических полей) материя ионизации, образуется плазма и генерируются механические ударные волны. Для оптического пробоя не требуется поглощения квантов света веществом в обычном смысле, он наблюдается прозрачных средах, например, в воздухе.

2. Применение высокоинтенсивного лазерного излучения в хирургии (общие принципы)

Основной метод лечения хирургических болезней - операции, связанные с рассечением биотканей. Воздействие сильносконцентрированной световой энергии на биоткань приводит к ее сильному нагреву с последующим испарением межтканевой и внутриклеточной жидкости, уплотнению и коагуляции тканевых структур. При малых экспозициях разрушению подвергаются поверхностные слои биоткани. С ростом экспозиции увеличиваются глубина и объем деструкции.

Хирургические лазеры бывают как непрерывные, так и импульсные, в зависимости от типа активной среды. Условно их можно разделить на три группы по уровню мощности:

коагулирующие: 1-5 Вт;

испаряющие и неглубоко режущие: 5-20 Вт;

глубоко режущие: 20-100 Вт.

Конечно, это деление в значительной степени условно, так как длина волны излучения и режим работы очень сильно влияют на требования по выходной мощности хирургического лазера

При использовании лазерного излучения большой мощности происходит очень быстрое повышение температуры ткани в месте контакта лазерного луча с биотканью. Это приводит к эффекту обратимой денатурации белка (40-53 °С), дальнейшее повышение температур (55-63 °С) к необратимой деструкции белковых структур. Повышение температуры от 63 до 100 °С приводит к коагуляции, а от 100 °С и более к испарению и карбонизации биоткани.

Операция, проводимая бесконтактным методом, обеспечивает ярко выраженное гемостатическое действие. Воздействие осуществляется практически бескровно или с минимальной кровопотерей, что упрощает ее выполнение и сопровождается незначительной травматизацией окружающих тканей.

Глубина проникновения излучения лазера в ткани зависит от времени воздействия и степени гидратации ткани. Чем выше гидрофильность, тем глубина проникновения меньше, и наоборот, чем меньше степень гидратации ткани, тем глубже проникает излучение. При импульсном лазерном излучение биоткань не прогревается на необходимую глубину в результате значительного поверхностного поглощения, и поэтому испарения не происходит, а имеет место только коагуляция. При длительном воздействии после обугливания изменяются параметры поглощения ткани и начинается испарение.

В лазерной хирургии используется высокоинтенсивное лазерное излучение (ВИЛИ), которое получают с помощью С0 2 , EnYAG-лазера и аргонового лазера.

Лазерные хирургические инструменты обладают высокой точностью и аккуратностью производимого деструктивного действия на оперируемые органы и ткани. Это актуально и подчас является всегда недостающим звеном в ключевых этапах операций, особенно операций, производимых на тканях и органах с интенсивным кровоснабжением, для того чтобы вызывать коагуляцию фронта деструкции и избегать кровоизлияния. Также применение лазерного скальпеля обеспечивает абсолютную стерильность операции. Здесь можно привести медицинские комплексы "Скальпель-1", "Калина", "Разбор", "Ланцет-1" - модели СО, лазера, предназначенные для проведения хирургических операций в различных областях медицинской практики. Лазерные хирургические аппараты являются универсальным режущим средством и могут быть использованы на ключевых этапах хирургических вмешательств. Показаниями к применению лазерного излучения во время операции служат: необходимость проведения операций на обильно кровоснабжаемых органах, когда требуется полный гемостаз, а его выполнение обычными способами сопровождается большой кровопотерей; необходимость стерилизации гнойных ран и профилактики возможного микробного загрязнения чистых операционных ран (это обстоятельство чрезвычайно важно в регионах с тропическим климатом); необходимость прецизионной техники оперативных вмешательств; оперативные вмешательства у больных с нарушением свертывания крови.

Универсальных режимов лазерного воздействия на различные ткани не существует. Поэтому подбор оптимальных параметров и режимов воздействия осуществляется хирургом самостоятельно на основе базовых методик применения лазерных хирургических установок в медицинской практике. Для хирургической обработки указанные методики разработаны сотрудниками Российского государственного научного центра лазерной медицины и ММА им. И.М. Сеченова, Тверской медицинской академии на основе обобщения клинического опыта в различных областях медицины: в хирургической стоматологии и челюстно-лицевой хирургии, абдоминальной хирургии, хирургии легких и плевры, пластической хирургии, косметологии, гнойной хирургии, ожоговой хирургии, хирургии аноректальной области, гинекологии, урологии, отоларингологии.

Характер взаимодействия лазерного излучения с биологической тканью зависит от плотности мощности лазерного излучения и от времени взаимодействия. Скорость разреза тканей лазерным лучом на разных этапах операции подбирается хирургом опытным путем в зависимости от вида ткани и желаемого качества разреза при выбранных параметрах лазерного излучения. Замедление скорости разреза может привести к увеличению карбонизации тканей и образованию глубокой зоны коагуляции. В суперимпульсном режиме и особенно в импульсно-периодическом режиме карбонизация и некроз, связанные с перегревом окружающих тканей, практически исключены при любой скорости движения лазерного луча. Приведем основные характеристики используемых в медицинской практике аппаратов. Длина волны излучения - 10,6 мкм. Выходная мощность излучения (регулируемая) - 0,1-50 Вт. Мощность в режиме "медимпульс" - 50 Вт. Плотность мощности лазерного облучения сверху ограничена условно величиной 50-150 Вт/см 2 для импульсных лазеров и величиной 10 Вт/см 2 для лазеров непрерывного действия. Диаметр лазерного луча на ткани (переключаемый) - 200; 300; 500 мкм. Наведение основного излучения лучом диодного лазера - 2 мВт, 635 нм. Режимы излучения (переключаемые) - непрерывный, импульсно-периодический, медимпульс. Время экспозиции излучения (регулируемое) - 0,1-25 мин. Длительность импульса излучения в импульсно-периодическом режиме (регулируемая) - 0,05-1,0 с. Длительность паузы между импульсами - 0,05-1,0 с. Пульт управления выносной. Включение и выключение излучения - ножная педаль. Удаление продуктов сгорания - система эвакуации дыма. Радиус операционного пространства - до 1200 мм. Система охлаждения - автономная, воздушно-жидкостного типа. Размещение в операционной напольное или настольное. Электропитание (переменный ток) - 220 В, 50 Гц, 600 Вт. Габаритные размеры, масса варьируют. Как можно заметить, основным отличием лазера для хирургии от остальных медицинских лазеров является высокая мощность излучения, особенно в импульсе. Это необходимо, чтобы за время действия импульса тканевое вещество успело поглотить излучение, разогреться и испариться в окружающее воздушное пространство. В основном все хирургические лазеры работают в средней инфракрасной области оптического диапазона.

Для проведения операций в мобильном варианте подходит JIM-10 - лазерный хирургический аппарат "Лазермед" - последнее достижение в области лазерной техники. Построенный на основе полупроводниковых лазеров, излучающих на длине волны 1,06 мкм, аппарат отличается высокой надежностью, малыми габаритными размерами и весом. Выходная мощность излучения - 0-7(10) Вт, габариты в упакованном состоянии 470 х 350 х 120 мм, масса не более 8 кг. Этот аппарат выполнен в виде чемодана, который в случае необходимости можно трансформировать в рабочее положение.

Также среди продукции других отечественных фирм-производителей можно указать следующие хирургические комплексы: АЛОД-ОБАЛКОМ "Хирург" (хирургический лазерный аппарат ближнего ИК-диапазона с регулируемой мощностью излучения). Предлагается 5 модификаций, отличающихся максимальной мощностью лазерного излучения, - 6 Вт, 9 Вт, 12 Вт, 15 Вт, 30 Вт. Используются для ПТ-терапии (коагуляции, удаления новообразований, разрезания тканей), установки на основе углекислотного, YAG-неодимового (общая хирургия) и аргонового (офтальмология) лазера компании, а также многие другие на основе как газовых, так и твердотельных и полупроводниковых активных сред.

Существуют многие зарубежные и отечественные аналоги, принципы использования которых аналогичны вышеизложенным.

3. Световой пробой

Световой пробой (оптический пробой, оптический разряд, лазерная искра), переход вещества в результате интенсивной ионизации в состояние плазмы под действием электромагнитных полей оптических частот. Впервые световой пробой наблюдался в 1963 при фокусировке в воздухе излучения мощного импульсного лазера на кристалле рубина, работающего в режиме модулированной добротности. При световом пробое в фокусе линзы возникает искра, эффект воспринимается наблюдателем как яркая вспышка, сопровождаемая сильным звуком. Для пробоя газов на оптических частотах требуются огромные электрические поля порядка 106-107 В/см, что соответствует интенсивности светового потока в луче лазера =109-1011 Вт/см 2 (для сравнения, СВЧ-пробой атм. воздуха происходит при напряжённости поля =104 В/см). Возможны два механизма Световой пробой газа под действием интенсивного светового излучения. Первый из них не отличается по своей природе от пробоя газов в полях не очень больших частот (сюда относится и СВЧ-диапазон). Первые затравочные электроны, появившиеся по тем или иным причинам в поле, сначала набирают энергию, поглощая фотоны при столкновениях с атомами газа. Этот процесс является обратным по отношению к тормозному испусканию квантов при рассеянии эл-нов нейтр. возбуждёнными атомами. Накопив энергию, достаточную для ионизации, эл-н ионизует атом, и вместо одного появляются два медленных эл-на, процесс повторяется. Так развивается лавина (см. ЛАВИННЫЙ РАЗРЯД). В сильных полях такой процесс осуществляется достаточно быстро и в газе вспыхивает пробой. Второй механизм возникновения Световой пробой, характерный именно для оптических частот, имеет чисто квантовую природу. Электроны могут отрываться от атомов в результате многоквантового фотоэффекта, т. е. при одновременном поглощении сразу нескольких фотонов. Одноквантовый фотоэффект в случае частот видимого диапазона невозможен, т. к. потенциалы ионизации атомов в несколько раз превышают энергию кванта. Так, напр., энергия фотона рубинового лазера равна 1,78 эВ, а ионизационный потенциал аргона равен 15,8 эВ, т. е. для отрыва электрона требуется 9 фотонов. Обычно многофотонные процессы маловероятны, но скорость их резко повышается при увеличении плотности числа фотонов, а при тех высоких интенсивностях, при которых наблюдают Световой пробой, вероятность их достигает значительной величины. В плотных газах, при давлениях порядка атмосферного и выше, всегда происходит лавинная ионизация, многофотонные процессы является здесь лишь причиной появления первых эл-нов. В разреженных же газах и в полях пикосекундных импульсов, когда электроны вылетают из области действия поля, не успев испытать много столкновений, лавина не развивается и Световой пробой возможен только за счёт непосредственного вырывания эл-нов из атомов под действием света. Это возможно только при очень сильных световых полях >107 В/см. При высоких давлениях Световой пробой наблюдается в гораздо более слабых полях. Весь механизм Световой пробой сложен и многообразен.

Основные световые величины

Световой пробой наблюдается и в конденсированных средах при распространении в них мощного лазерного излучения и может явиться причиной разрушения материалов и оптических деталей лазерных устройств.

Использование полупроводникового лазера открывает новые возможности в качестве и сроках проводимого лечения. Этот высокотехнологический хирургический инструмент и аппарат может применяться для профилактики и ведения раны в постоперационном периоде. Это становится возможным за счет использования физиотерапевтических свойств лазерного излучения инфракрасного спектра, обладающего выраженным противовоспалительным эффектом, бактериостатическим и бактерицидным действием, и оказывающего стимулирующее влияние на тканевой иммунитет и процессы регенерации. Отдельно стоит упомянуть о возможности использования диодного лазера для отбеливания зубов на 3-4 тона за одно посещение. Тем не менее, наиболее частыми областями применения лазера являются хирургия и пародонтология.

Результаты, полученные при работе с лазером, дают основания утверждать: диодный лазер - это практически незаменимый помощник врача в каждодневной работе, что подтверждается и положительными отзывами пациентов. По их мнению применение данного вида лечения является обоснованным и комфортным. Операция проходит бескровно, быстро, послеоперационный этап переносится легче.

Объективно наблюдаются уменьшение сроков заживления в 2 раза, меньшие болевые ощущения во время и после операций, позволяющие обходиться без анестетиков, более быстрое течение регенерации, отсутствие отеков - неудивительно, что все большее количество пациентов предпочитают проведение манипуляции лазером. Но это еще не все - разработанная методика ведения пациентов с заболеванием пародонта позволяет уменьшить количество и отсрочить проведение лоскутных операций. Также получены обнадеживающие результаты в эндодонтии - очень перспективным представляется проведение обработки каналов лазерным светом.

Области применения . Диодные лазеры отлично препарируют, обеззараживают, коагулируют и реконструируют мягкие ткани, благодаря чему с их помощью можно успешно выполнять следующие манипуляции:

* Коррекция десны при предпротезной подготовке облегчает работу с материалами. Бескровное поле дает непосредственный доступ к поверхностям, закрытым слизистой оболочкой.

* Пластика уздечек - устраняются короткие уздечки языка и верхней губы, пластика преддверия полости рта. В большинстве случаев успешно проводится полное удаление уздечки. В процессе заживления наблюдается минимальное образование отека - значительно меньше, чем раны от вмешательства скальпелем.

* Обработка пародонтальных карманов при гингивите и начальном пародонтите. После проведения курса облучения достигается быстрый и хороший результат. Также замечено, что твердые зубные отложения после воздействия лазерного излучения легче удаляются.

* Гингивопластика. Гингивальная гиперплазия, возникающая в результате ортодонтического лечения, механического раздражения встречается все чаще. Известно, что стимуляция слизистых тканей приводит к патологическому покрытию зуба. Реакция ткани постоянна, обычно требуется удаление лишней ткани. Лазерная хирургия представляет эффективный метод удаления лишней ткани, восстанавливающий нормальный внешний вид слизистой.

* Лечение афтозных язв и гиперестезий герпеса. Используются физиотерапевтические возможности диодного лазера. Энергия лазера в виде несфокусированного пучка, направленная на поверхность данных повреждений, воздействует на нервные окончания (при гиперестезиях). Более трудные случаи требуют наличия легкого поверхностного контакта.

* Косметическая реконструкция слизистой. Эта манипуляция является совершенным эстетическим методом лечения. Лазеры дают возможность удалять ткань послойно. Отсутствие кровотечения позволяет проводить данные операции с большей точностью. Десневые ткани легко выпариваются, оставляя четкие края. Параметры ширины, длины разрезов и высоты гингивальных контуров легко достижимы.

* Пародонтологическое лечение. В данной ситуации наиболее успешным является комплексный подход, сочетающий хирургию и физиотерапию. Имеются программы лечения, приводящие к длительной ремиссии при соблюдении пациентом рекомендаций по гигиене полости рта. При первом посещении производится купирование острого процесса, затем производится санация патологических карманов, при необходимости выполняются хирургические манипуляции с использованием дополнительных костных материалов. Далее пациент проходит поддерживающий курс лазерной терапии. Период лечения занимает в среднем 14 дней.

* Эндодонтическое лечение. Традиционное применение лазера в эндодонтии - это выпаривание остатков пульпы и обеззараживание каналов. Специальные эндодонтические насадки позволяют работать непосредственно в открытом канале до апекса. С помощью лазера происходит аблация остатков тканей, уничтожение бактерий и остекление стенок каналов. При наличии фистулы лазерный луч проходит через канал фистулы в сторону очага воспаления. При этом на некоторое время приостанавливается распространение инфекции и подавляются симптомы, однако рецидив очевиден, если корневой канал не будет полноценно обработан.

* Отбеливание. Не стоит отмахиваться от того факта, что это одна из самых востребованных среди пациентов эстетических процедур. С помощью диодного лазера существенного отбеливающего эффекта удается достичь уже за одно посещение. Сама процедура предельно проста и заключается в активации лазерным излучением предварительно нанесенного отбеливающего геля.

Преимущества. В хирургической стоматологии и пародонтологии преимущества лазера определяются такими факторами, как точность и простота доступа к операционному полю. При этом во время операции отсутствует кровотечение, что позволяет операционному полю оставаться сухим, а это естественным образом обеспечивает лучший обзор - в результате уменьшается время проведения операции. Дополнительно стоит отметить, что во время операции сосуды коагулируются, тем самым происходит минимизация послеоперационного отека.

Также за счет противовоспалительного и бактериостатического действия лазерного излучения уменьшается риск возникновения осложнений. Заживление ран происходит быстрее по сравнению с использованием традиционных методик.

При лазерном консервативном лечении гингивита и пародонтита с глубиной карманов до 5 мм отмечается отсутствие кровоточивости и воспалительных явлений, в ряде случаев наблюдается регенерация костной ткани, что подтверждается рентгенологическими исследованиями.

При проведении отбеливания помимо небольшого времени процедуры (около 1 часа) значительным преимуществом является минимальное проявление гиперчувствительности после процедуры отбеливания.

Отечественные разработки. Как видите, преимуществ использования диодных лазеров немало. Есть правда и один серьезный недостаток, присущий всем инновационным разработкам во всех областях человеческого знания - высокая цена. Действительно, стоимость таких аппаратов, особенно производства известных западных брендов, значительна. К счастью, в этой области есть и российские разработки, причем это тот достаточно редкий случай (когда речь заходит о высокотехнологичных разработках), когда "российское" не означает "худшее". Еще с советских времен отечественные разработки в области лазерных технологий не только не уступают западным аналогам, но зачастую и превосходят их - многие прототипы современных лазерных систем разрабатывались именно в нашей стране.

Существует и отечественный полупроводниковый стоматологический лазер - это аппарат "Лами С" (совместная разработка УМЦ "Дента-Рус" и НПФ "Опттехника"), которым уже заинтересовались некоторые западные компании, т.к. среди всего прочего неоспоримым его достоинством является тот факт, что стоимость лазера в 3 раза ниже, по сравнению с импортными аналогами.

В аппарате используются полупроводниковые лазерные кристаллы, работающие от низковольтных маломощных (350 Вт) источников питания, а не газоразрядные трубки, требующие специального высоковольтного источника питания. Такая конструкция позволяет решить сразу несколько задач - отсутствие высокого напряжения является определенной гарантией безопасности для врача и пациента, нет вредных электромагнитных полей, не требуется и специальное охлаждение.

Но вернемся к невысокой цене прибора - это позволяет значительно быстрее окупить финансовые вложения и начать получать прибыль. Согласитесь, помимо улучшения качества обслуживания пациентов, это также очень немаловажно в условиях коммерческого приема.

Из других особенностей аппаратов "Лами" имеет смысл отметить следующие - они не требуют особых условий и специального обслуживания, малогабаритны и легко транспортируются в пределах клиники, обладают надежностью и стабильностью параметров. Сервисное обслуживание организовано таким образом, что при возникновении неисправностей на время ремонта врач получает другой аппарат.

Заключение

Основными инструментами, которые применяет хирург для диссекции тканей, являются скальпель и ножницы, т. е. режущие инструменты. Однако раны и разрезы, производимые скальпелем и ножницами, сопровождаются кровотечением, требующим применения специальных мер гемостаза. Кроме того, при контакте с тканями режущие инструменты могут распространять микрофлору и клетки злокачественных опухолей вдоль линии разреза. В связи с этим с давних пор хирурги мечтали иметь в своем распоряжении такой инструмент, который производил бы бескровный разрез, одновременно уничтожая патогенную микрофлору и опухолевые клетки в операционной ране. Вмешательства на "сухом операционном поле" являются идеалом для хирургов любого профиля.

Попытки создать "идеальный" скальпель относятся к концу прошлого века, когда был сконструирован так называемый электронож, работающий с использованием токов высокой частоты. Этот прибор в более совершенных вариантах в настоящее время применяют довольно широко хирурги различных специальностей. Однако по мере накопления опыта выявлены отрицательные стороны "электрохирургии", основной из которых является слишком большая зона термического ожога тканей в области проведения разреза. Известно, что чем шире зона ожога, тем хуже заживает хирургическая рана. Кроме того, при использовании электроножа возникает необходимость включения тела больного в электрическую цепь. Электрохирургические аппараты отрицательно влияют на работу электронных приборов и устройств слежения за жизнедеятельностью организма во время операции. Криохирургические аппараты также вызывают значительное повреждение тканей, ухудшающее процесс заживления. Скорость рассечения тканей криоскальпелем очень низка. Фактически при этом происходит не рассечение, а деструкция тканей. Значительную зону ожога наблюдают и при использовании плазменного скальпеля. Если принять во внимание, что луч лазера обладает выраженными гемостатическими свойствами, а также способностью герметизировать бронхиолы, желчевыводящие протоки и протоки поджелудочной железы, то применение лазерной техники в хирургии становится исключительно перспективным. Кратко перечисленные некоторые достоинства применения лазеров в хирургии относятся прежде всего к лазерам на углекислом газе (С 0 2 -лазерам). Кроме них, в медицине применяют лазеры, работающие на других принципах и на других рабочих веществах. Эти лазеры обладают принципиально другими качествами при воздействии на биологические ткани и применяющих по сравнительно узким показаниям, в частности в сердечно-сосудистой хирургии, в онкологии, для лечения хирургических заболеваний кожи и видимых слизистых оболочек и др.

С писок использованной литературы

1. А.Н. Ремизов "Медицинская и биологическая физика".

2. О.К. Скобелкина "Лазеры в хирургии под редакцией профессора".

3. С.Д. Плетнева "Лазеры в клинической медицине" под редакцией".

Размещено на Allbest.ru

...

Подобные документы

    Основные направления и цели медико-биологического использования лазеров. Меры защиты от лазерного излучения. Проникновение лазерного излучения в биологические ткани, их патогенетические механизмы взаимодействия. Механизм лазерной биостимуляции.

    реферат , добавлен 24.01.2011

    Понятие и назначение лазера, принцип действия и структура лазерного луча, характер его взаимодействия с тканью. Особенности практического использования лазера в стоматологии, оценка основных преимуществ и недостатков данного метода лечения зубов.

    реферат , добавлен 14.05.2011

    Общее понятие о квантовой электронике. История развития и принцип устройства лазера, свойства лазерного излучения. Низкоинтенсивные и высокоинтенсивные лазеры: свойства, действие на биологические ткани. Применение лазерных технологий в медицине.

    реферат , добавлен 28.05.2015

    Процесс лазерного излучения. Исследования в области лазеров в диапазоне рентгеновских волн. Медицинское применение CO2–лазеров и лазеров на ионах аргона и криптона. Генерация лазерного излучения. Коэффициент полезного действия лазеров различных типов.

    реферат , добавлен 17.01.2009

    Физические основы применения лазерной техники в медицине. Типы лазеров, принципы действия. Механизм взаимодействия лазерного излучения с биотканями. Перспективные лазерные методы в медицине и биологии. Серийно выпускаемая медицинская лазерная аппаратура.

    реферат , добавлен 30.08.2009

    Понятие лазерного излучения. Механизм действия лазера на ткани. Его применение в хирургии для рассечения тканей, остановки кровотечения, удаления патологий и сваривания биотканей; стоматологии, дерматологии, косметологии, лечении заболеваний сетчатки.

    презентация , добавлен 04.10.2015

    Лазерные методы диагностики. Оптические квантовые генераторы. Основные направления и цели медико-биологического использования лазеров. Ангиография. Диагностические возможности голографии. Термография. Лазерная медицинская установка длялучевой терапии.

    реферат , добавлен 12.02.2005

    Физическая природа и лечебные действия ультразвука. Основные направления его медико-биологического приложения. Опасность и побочные эффекты ультразвукового исследования. Сущность эхокардиографии. Постановка диагноза заболеваний внутренних органов.

    презентация , добавлен 10.02.2016

    Применение ионизирующего излучения в медицине. Технология лечебных процедур. Установки для дистанционной лучевой терапии. Применение изотопов в медицине. Средства защиты от ионизирующего излучения. Процесс получения и использования радионуклидов.

    презентация , добавлен 21.02.2016

    Ознакомление с историей открытия и свойствами лазеров; примеры использования в медицине. Рассмотрение строения глаза и его функций. Заболевания органов зрения и методы их диагностики. Изучение современных методов коррекции зрения с помощью лазеров.

Лазерное излучение в медицине представляет собой вынужденную или стимулированную волну оптического диапазона длиной от 10 нм до 1000 мкм (1 мкм=1000 нм).

Лазерное излучение имеет :
- когерентность - согласованное протекание во времени нескольких волновых процессов одной частоты;
- монохроматичность - одна длина волны;
- поляризованность - упорядоченность ориентации вектора напряженности электромагнитного поля волны в плоскости, перпендикулярной ее распространению.

Физическое и физиологическое действие лазерного излучения

Лазерное излучение (ЛИ) обладает фотобиологической активностью. Биофизические и биохимические реакции тканей на ЛИ различны и зависят от диапазона, длины волны и энергии фотона излучения:

ИК-излучение (1000 мкм - 760 нм, энергия фотонов 1-1,5 ЭВ) проникает на глубину 40-70 мм, вызывает колебательные процессы - тепловое действие;
- видимое излучение (760-400 нм, энергия фотонов 2,0-3,1 ЭВ) проникает на глубину 0,5-25 мм, вызывает диссоциацию молекул и активацию фотохимических реакций;
- УФ-излучение (300-100 нм, энергия фотонов 3,2-12.4 ЭВ) проникает на глубину 0,1-0,2 мм, вызывает диссоциацию и ионизацию молекул -фотохимическое действие.

Физиологическое действие низкоинтенсивного лазерного излучения (НИЛИ) реализуется нервным и гуморальным путем :

Изменение в тканях биофизических и химических процессов;
- изменение обменных процессов;
- изменение метаболизма (биоактивация);
- морфологические и функциональные изменения в нервной ткани;
- стимуляция сердечно-сосудистой системы;
- стимуляция микроциркуляции;
- повышение биологической активности клеточных и тканевых элементов кожи, активизирует внутриклеточные процессы в мышцах, окислительно-восстановительные процессы, образование миофибрилл;
- повышает устойчивость организма.

Высокоинтенсивное лазерное излучение (10,6 и 9,6 мкм) вызывает :

Термический ожог ткани;
- коагуляцию биологических тканей;
- обугливание, сгорание, испарение.

Лечебное действие низкоинтенсивного лазера (НИЛИ)

Противовоспалительное, снижение отечности ткани;
- аналгезирующее;
- стимуляция репаративных процессов;
- рефлексогенное воздействие - стимуляция физиологических функций;
- генерализованное воздействие - стимуляция иммунного ответа.

Лечебное действие высокоинтенсивного лазерного излучения

Антисептическое действие, образование коагуляционной пленки, защитный барьер от токсических агентов;
- резание тканей (лазерный скальпель);
- сварка металлических протезов, ортодонтических аппаратов.

Показания НИЛИ

Острые и хронические воспалительные процессы;
- травма мягких тканей;
- ожог и отморожение;
- кожные заболевания;
- заболевания периферической нервной системы;
- заболевания опорно-двигательного аппарата;
- сердечно-сосудистые заболевания;
- заболевания органов дыхания;
- заболевания желудочно-кишечного тракта;
- заболевания мочеполовой системы;
- заболевания уха, горла, носа;
- нарушения иммунного статуса.

Показания к лазерному излучению в стоматологии

Заболевания слизистой оболочки полости рта;
- заболевания пародонта;
- некариозные поражения твердых тканей зубов и кариес;
- пульпит, периодонтит;
- воспалительный процесс и травма челюстно-лицевой области;
- заболевания ВНЧС;
- лицевые боли.

Противопоказания

Опухоли доброкачественные и злокачественные;
- беременность до 3-х месяцев;
- тиреотоксикоз, диабет 1 типа, болезни крови, недостаточность функции дыхания, почек, печени, кровообращения;
- лихорадочные состояния;
- психические заболевания;
- наличие имплантированного водителя ритма;
- судорожные состояния;
- индивидуальная непереносимость фактора.

Аппаратура

Лазеры - техническое устройство, испускающее излучение в узком оптическом диапазоне. Современные лазеры классифицируются :

По активному веществу (источник индуцированного излучения) -твердотельные, жидкостные, газовые и полупроводниковые;
- по длине волны и излучения - инфракрасные, видимые и ультрафиолетовые;
- по интенсивности излучения - низкоинтенсивные и высокоинтенсивные;
- по режиму генерации излучения - импульсный и непрерывный.

Аппараты комплектуются излучающими головками и специализированными насадками - стоматологические, зеркальные, акупунктурные, магнитные и др., обеспечивающие эффективность проводимого лечения. Сочетанное использование лазерного излучения и постоянного магнитного поля усиливает лечебный эффект. Серийно производятся в основном три вида лазерной терапевтической аппаратуры:

1) на базе гелий-неоновых лазеров, работающих в непрерывном режиме генерации излучения с длиной волны 0,63 мкм и выходной мощностью 1-200 мВт:

УЛФ-01, «Ягода»
- АФЛ-1, АФЛ-2
- ШАТЛ-1
- АЛТМ-01
- ФАЛМ-1
- «Платан-М1»
- «Атолл»
- АЛОК-1 - аппарат лазерного облучения крови

2) на базе полупроводниковых лазеров, работающих в непрерывном режиме генерации излучения с длиной волны 0,67-1,3 мкм и выходной мощностью 1-50 мВт:

АЛТП-1, АЛТП-2
- «Изель»
- «Мазик»
- «Вита»
- «Колокольчик»

3) на базе полупроводниковых лазеров, работающих в импульсном режиме генерации излучения с длиной волны 0,8-0,9 мкм, мощностью импульса 2-15 Вт:

- "Узор", "Узор-2К"
- "Лазурит-ЗМ"
- "Люзар-МП"
- "Нега"
- "Азор-2К"
- "Эффект"

Аппараты для магнитолазерной терапии:

- "Млада"
- АМЛТ-01
- "Светоч-1"
- "Лазурь"
- "Эрга"
- МИЛТА - магнито-инфракрасный

Техника и методика лазерного излучения

Воздействие ЛИ проводят на очаг поражения или органа, сегментарно-метамерной зоны (накожно), биологически активной точки. При лечении глубокого кариеса и пульпита биологическим методом облучение проводят в области дна кариозной полости и шейки зуба; периодонтита - световод вводят в корневой канал, предварительно механически и медикаментозно обработанный, и продвигают до верхушки корня зуба.

Методика проведения лазерного облучения - стабильная, стабильно-сканирующая или сканирующая, контактная или дистанционная.

Дозирование

Ответные реакции на ЛИ зависят от параметров дозирования:

Длина волны;
- методика;
- режим работы - непрерывный или импульсный;
- интенсивность, плотность мощности (ПМ): низкоинтенсивное ЛИ -мягкое (1-2 мВт) применяют для воздействия на рефлексогенные зоны; среднее (2-30 мВт) и жесткое (30-500 мВт) - на область патологического очага;
- время воздействия на одно поле - 1-5 мин, суммарное время не более 15 мин. ежедневно или через день;
- курс лечения 3-10 процедур, повторный через 1-2 месяца.

Техника безопасности

Глаза врача и пациента защищают очками СЗС-22, СЗО-33;
- нельзя смотреть на источник излучения;
- стены кабинета должны быть матовыми;
- нажимать на кнопку «пуск» после установки излучателя на патологический очаг.

В настоящее время трудно представить прогресс в медицине без лазерных технологий, которые открыли новые возможности в разрешении многочисленных медицинских проблем.

Изучение механизмов воздействия лазерного излучения различных длин волн и уровней энергии на биологические ткани позволяет создавать лазерные медицинские многофункциональные приборы, диапазон применения которых в клинической практике стал настолько широким, что очень трудно ответить на вопрос: для лечения каких заболеваний лазеры не применяют?

Развитие лазерной медицины идет по трем основным ветвям: лазерная хирургия, лазерная терапия и лазерная диагностика.

Нашей областью деятельности являются лазеры для применений в хирургии и косметологии, имеющие достаточно большую мощность для разрезания, вапоризации, коагуляции и других структурных изменений в биоткани.

В ЛАЗЕРНОЙ ХИРУРГИИ

Применяются достаточно мощные лазеры со средней мощностью излучения десятки ватт, которые способны сильно нагревать биоткань, что приводит к ее резанию или испарению. Эти и другие характеристики хирургических лазеров обуславливают применение в хирургии различных видов хирургических лазеров, работающих на разных лазерных активных средах.

Уникальные свойства лазерного луча позволяют выполнять ранее невозможные операции новыми эффективными и минимально инвазивными методами.

1. Хирургические лазерные системы обеспечивают:

2. эффективную контактную и бесконтактную вапоризацию и деструкцию биоткани;

3. сухое операционное поле;

4. минимальное повреждение окружающих тканей;

5. эффективный гемо- и аэростаз;

6. купирование лимфатических протоков;

7. высокую стерильность и абластичность;

8. совместимость с эндоскопическими и лапароскопическими инструментам

Это дает возможность эффективно использовать хирургические лазеры для выполнения самых разнообразных оперативных вмешательств в урологии, гинекологии, оториноларингологии, ортопедии, нейрохирургии и т. д.

Ольга (княгиня Киевская)

[править]

Материал из Википедии - свободной энциклопедии

(Перенаправлено с Княгиня Ольга)Ольга

В. М. Васнецов. «Княгиня Ольга»

3-й княгиня Киева

Предшественник: Игорь Рюрикович

Преемник: Святослав Игоревич

Вероисповедание: Язычество, перешла в христианство

Рождение: неизвестна

Династия: Рюриковичи

Супруг: Игорь Рюрикович

Дети: Святослав Игоревич

Княги́ня О́льга, в крещении Еле́на († 11 июля 969) - княгиня, правила Киевской Русью после гибели мужа, князя Игоря Рюриковича, как регент с 945 до примерно 960 года. Первая из русских правителей приняла христианство ещё до крещения Руси, первая русская святая.

Спустя примерно 140 лет после её смерти древнерусский летописец так выразил отношение русских людей к первому правителю Киевской Руси, принявшему крещение: Была она предвозвестницей христианской земле, как денница перед солнцем, как заря перед рассветом. Она ведь сияла, как луна в ночи; так и она светилась среди язычников, как жемчуг в грязи.

1 Биография

1.1 Происхождение

1.2 Брак и начало правления

1.3 Месть древлянам

1.4 Правление Ольги

2 Крещение Ольги и церковное почитание

3 Историография по Ольге

4 Память о Святой Ольге

4.1 В художественной литературе

4.2 Кинематограф

5 Первоисточники

[править]

Биография

[править]

Происхождение

Согласно самой ранней древнерусской летописи, «Повести Временных Лет», Ольга была родом из Пскова. Житие святой великой княгини Ольги уточняет, что родилась она в деревне Выбуты Псковской земли, в 12 км от Пскова выше по реке Великой. Имена родителей Ольги не сохранились, по Житию они были не знатного рода, «от языка варяжска». По мнению норманистов, варяжское происхождение подтверждается её именем, имеющим соответствие в древнескандинавском как Helga. Присутствие предположительно скандинавов в тех местах отмечено рядом археологических находок, возможно датируемых 1-й половиной X века. С другой стороны, в летописях имя Ольги часто передано славянской формой «Вольга». Известно и древнечешское имя Olha.

Княгиня Ольга на Памятнике «1000-летие России» в Великом Новгороде

Типографская летопись (конец XV века) и более поздний Пискаревский летописец передают слух, будто Ольга была дочерью Вещего Олега, который стал править Киевской Русью как опекун малолетнего Игоря, сына Рюрика: «Нецыи же глаголют, яко Ольгова дщери бе Ольга». Олег же поженил Игоря и Ольгу.

Так называемая Иоакимовская летопись, достоверность которой ставится историками под сомнение, сообщает о знатном славянском происхождении Ольги:

«Когда Игорь возмужал, оженил его Олег, выдал за него жену от Изборска, рода Гостомыслова, которая Прекраса звалась, а Олег переименовал её и нарек в своё имя Ольга. Были у Игоря потом другие жены, но Ольгу из-за мудрости её более других чтил».

Болгарские историки выдвигали также версию о болгарских корнях княгини Ольги, опираясь в основном на сообщение Нового Владимирского Летописца («Игоря же ожени [Олег] въ Болгарехъ, поятъ же за него княжну Ольгу».) и переводя летописное название Плесков не как Псков, но как Плиска - болгарская столица того времени. Названия обоих городов действительно совпадают в древнеславянской транскрипции некоторых текстов, что и послужило основанием для автора Нового Владимирского Летописца перевести сообщение «Повести временных лет» об Ольге из Пскова как об Ольге из болгар, так как написание Плесков для обозначения Пскова давно вышло из употребления.

[править]

Брак и начало правления

Первая встреча князя Игоря с Ольгой.

Худ. В. К. Сазонов

По «Повести временных лет» Вещий Олег женил Игоря Рюриковича, начавшего самостоятельно править с 912 года, на Ольге в 903 году. Дата эта подвергается сомнению, так как, согласно Ипатьевскому списку той же «Повести», их сын Святослав родился только в 942 году.

Возможно, чтобы разрешить это противоречие, поздние Устюжская летопись и Новгородская летопись по списку П. П. Дубровского сообщают о 10-летнем возрасте Ольги на момент свадьбы. Данное сообщение противоречит легенде, изложенной в Степенной книге (2-я половина XVI века), о случайной встрече с Игорем на переправе под Псковом. Князь охотился в тамошних местах. Переправляясь через реку на лодке, он заметил, что перевозчиком была юная девушка, переодетая в мужскую одежду. Игорь тотчас же «разгореся желанием» и стал приставать к ней, однако получил в ответ достойную отповедь: «Зачем смущаешь меня, княже, нескромными словами? Пусть я молода и незнатна, и одна здесь, но знай: лучше для меня броситься в реку, чем стерпеть поругание». О случайном знакомстве Игорь вспомнил, когда пришло время искать себе невесту, и послал Олега за полюбившейся девушкой, не желая никакой другой жены.

«Княгиня Ольга встречает тело князя Игоря». Эскиз В. И. Сурикова, 1915

Новгородская Первая летопись младшего извода, которая содержит в наиболее неизменном виде сведения из Начального свода XI века, оставляет сообщение о женитьбе Игоря на Ольге не датированным, то есть самые ранние древнерусские летописцы не имели сведений о дате свадьбы. Вполне вероятно, что 903 год в тексте ПВЛ возник в более позднее время, когда монах Нестор пытался привести начальную древнерусскую историю в хронологический порядок. После свадьбы имя Ольги упоминается в очередной раз только через 40 лет, в русско-византийском договоре 944 года.

Согласно летописи, в 945 году князь Игорь погибает от рук древлян после неоднократного взимания с них дани. Наследнику престола Святославу тогда было только 3 года, поэтому фактическим правителем Киевской Руси в 945 году стала Ольга. Дружина Игоря подчинилась ей, признав Ольгу представителем законного наследника престола. Решительный образ действий княгини в отношении древлян также мог склонить дружинников в её пользу.

[править]

Месть древлянам

Древляне после убийства Игоря прислали к его вдове Ольге сватов звать её замуж за своего князя Мала. Княгиня последовательно расправилась со старейшинами древлян, а затем привела к покорности народ древлян. Древнерусский летописец подробно излагает месть Ольги за смерть мужа:

«Мщение Ольги против идолов древлянских». Гравюра Ф. А. Бруни, 1839.

1-я месть княгини Ольги: Сваты, 20 древлян, прибыли в ладье, которую киевляне отнесли и бросили в глубокую яму на дворе терема Ольги. Сватов-послов закопали живьем вместе с ладьёй. Ольга посмотрела на них из терема и спросила: «Довольны ли честью?» А они закричали: «Ох! Хуже нам Игоревой смерти».

Вторая месть Ольги древлянам. Миниатюра из Радзивилловской летописи.

2-я месть: Ольга попросила для уважения прислать к ней новых послов из лучших мужей, что и было с охотой исполнено древлянами. Посольство из знатных древлян сожгли в бане, пока те мылись, готовясь к встрече с княгиней.

3-я месть: Княгиня с небольшой дружиной приехала в земли древлян, чтобы по обычаю справить тризну на могиле мужа. Опоив во время тризны древлян, Ольга велела рубить их. Летопись сообщает о 5 тысячах перебитых древлян.

Четвёртая месть Ольги древлянам. Миниатюра из Радзивилловской летописи.

4-я месть: В 946 году Ольга вышла с войском в поход на древлян. По Новгородской Первой летописи киевская дружина победила древлян в бою. Ольга прошлась по Древлянской земле, установила дани и налоги, после чего вернулась в Киев. В ПВЛ летописец сделал врезку в текст Начального свода об осаде древлянской столицы Искоростеня. По ПВЛ после безуспешной осады в течение лета Ольга сожгла город с помощью птиц, к ногам которых велела привязать зажжённую паклю с серой. Часть защитников Искоростеня были перебиты, остальные покорились. Схожая легенда о сожжении города с помощью птиц излагается также Саксоном Грамматиком (XII век) в его компиляции устных датских преданий о подвигах викингов и скальдом Снорри Стурлусоном.

В настоящее время трудно представить прогресс в медицине без лазерных технологий, которые открыли новые возможности в разрешении многочисленных медицинских проблем. Изучение механизмов воздействия лазерного излучения различных длин волн и уровней энергии на биологические ткани позволяет создавать лазерные медицинские многофункциональные приборы, диапазон применения которых в клинической практике стал настолько широким, что очень трудно ответить на вопрос: для лечения каких заболеваний лазеры не применяют?
Развитие лазерной медицины идет по трем основным ветвям: лазерная хирургия, лазерная терапия и лазерная диагностика.

В лазерной хирургии применяются достаточно мощные лазеры со средней мощностью излучения десятки ватт, которые способны сильно нагревать биоткань, что приводит к ее разрезанию или испарению. Эти и другие характеристики хирургических лазеров обуславливают применение в хирургии различных их видов, работающих на разных лазерных активных средах.

Уникальные свойства лазерного луча позволяют выполнять ранее невозможные операции новыми эффективными и минимально инвазивными методами.

Хирургические лазерные системы обеспечивают:

  • эффективную контактную и бесконтактную вапоризацию и деструкцию биоткани;
  • сухое операционное поле;
  • минимальное повреждение окружающих тканей;
  • эффективный гемо- и аэростаз;
  • купирование лимфатических протоков;
  • высокую стерильность и абластичность;
  • совместимость с эндоскопическими и лапароскопическими инструментам

Это дает возможность эффективно использовать хирургические лазеры для выполнения самых разнообразных оперативных вмешательств:
В урологии:

У женщин

  • Пластика больших и малых половых губ, промежности.
  • Пластика промежности при послеродовых и травматических разрывах
  • Пластика рубцовой деформации шейки матки
  • Рефлорация (восстановление девственной плевы)

У мужчины

  • Лазерная коррекция уздечки полового члена
  • Циркумцизия (лазерное лечение фимоза)
  • Удаление кондилом полового члена, уретры, промежности, перианальной зоны

В гинекологии:

  • Лазеротерапия фоновых и предраковых заболеваний шейки матки (эрозия, лейкоплакия, полип, наботовы кисты, кондиломы, дисплазия).
  • Лазеротерапия и удаление лазером кондилом наружных половых органов (в зависимости от распространённости процесса).
  • Лазеротерапия и удаление лазером кондилом кожи промежности и перианальной зоны.
  • Лечение дистрофических заболеваний вульвы

В ортопедии :лечение вальгусной деформации стопы, вросшего ногтя и т.д.

Косметология так же не обойдена вниманием. Лазер применяется и для эпиляции, и для лечения сосудистых и пигментных дефектов кожи, удаления бородавок и папиллом, и для шлифовки кожи, и для удаления татуировок и пигментных пятен и тд

История изобретения лазера началась в 1916 году, когда Альберт Энштейн создал теорию взаимодействия излучения с веществом, в которой прослеживалась мысль о возможности создания квантовых усилителей и генераторов электромагнитных волн.

В 1960 г. американский физик Теодор Мейман, основываясь на работах Н.Басова, А.Прохорова и Ч.Таунса, сконструировал первый лазер на рубине с длиной волны в 0,69 мкм.В том же году доктор Леон Голдман впервые использовал рубиновый лазер для разрушения волосяных фолликулов. Так началась история масштабного применения лазерных технологий в эстетической медицине.

В 1983 г. Андерсон и Парриш предложили метод селективного фототермолиза, который основан на способности биотканей избирательно поглощать световое излучение определенной длины волны, что приводит к их локальной деструкции. При поглощении основными хромофорами кожи — водой, гемоглобином или меланином — электромагнитная энергия лазерного излучения преобразуется в тепло, что вызывает нагрев и коагуляцию хромофоров.

Лазерная косметология - одна из самых быстро развивающихся областей эстетической медицины. Ещё несколько лет назад видимое омоложение ассоциировалось у нас с работой пластического хирурга, то сегодня в каждом престижном салоне красоты есть аппараты передовых технологий - фото, IPL-система или лазер. Энергия света пришла на помощь косметологам.

На сегодняшний день существует множество различных лазерных аппаратов и вошли они в косметологию благодаря лазерной шлифовке. Именно она послужила визитной карточкой для косметологического лазера. Мощный луч света на глазах сглаживал рубцовые неровности кожи, снимал верхний слой эпидермиса, а вместе с ним нежелательные пигментации Тогда было не важно, что сильно травмированная кожа заживала 2 недели - главное - отличный результат, которым был доволен как доктор, так и пациент. Шрамы и рубцы - проблема актуальная во все времена.

Лазерная эпиляция появилась не больше 30 -ти лет назад. Это связано было с появлением теории «селективного фототермолиза». В ней идет речь о том, что любые окрашенные ткани человека (волос, сосуды на поверхности кожи, пигментные пятна) избирательно поглощают свет, при этом нагреваются и разрушаются. Теория была доказана в 1986 году группой ученных из США, во глове с дерматологом Роксом Андерсоном. Таким образом на основе этого в 1994 году был создан первый прибор для фотоэпиляции , а лазерный прибор для лазерной эпиляции вышел на рынок только в 1996 году.

Что собой представляет "селективный фототермолиз "? Все дело в том, что лазерный луч, попадая на живую ткань, в частности на кожу, воздействует на компоненты кожи по-разному. Основные компоненты кожи, поглощающие свет - вода, меланин и гемоглобин. Эти вещества, называются хромофорами кожи. Спектры поглощения этих веществ различны.

Благодаря оптимизированному спектру излучения, косметологические приборы с искусственными источниками света и тепла позволяют избирательно воздействовать на структуры тканей-мишеней, вызывая, например, их коагуляцию. При проведении процедур с применением фотометодик для достижения эффекта осуществляется воздействие на поверхностные кровеносные сосуды (гемоглобин), на волосы и волосяные фолликулы (меланин), на коллаген и эластин в дерме. При проведении терапии угревой болезни (акне) проводится избирательное воздействие на вызывающий воспаление продукт жизнедеятельности бактерий. Так или иначе, результатом воздействия является доведение соответствующей структуры тканей-мишеней до критической температуры, при которой она сама и/или окружающие ее ткани претерпевают необратимые изменения. Процесс избирательного нагрева структур тканей-мишеней с помощью источника широкого спектра излучения называется селективным фототермолизом.

Основываясь на принципе селективного фототермолиза с применением нанотехнологий разработана новая высокоэффективная процедура фракционного фототермолиза (фраксель). Она позволяет улучшить качество кожи, удалить нежелательную пигментацию морщины, обеспечивает прекрасный лифтинг тканей лица, шеи и декольте. Хороший результат дают сеансы фракционного фототермолиза при лечении последствий угревой болезни (пост акне рубцов). В отличие от других методов коррекции, процедура фраксель комфортна и практически безболезненна, а также обеспечивает быструю реабилитацию.

Итак, банальные представления о лазере, как об огромном аппарате, что- то вроде гиперболоида инженера Гарина, канули в лета. С момента изобретения первого рубинового лазера, размером с однокомнатную квартиру прошло более 50 лет. И сейчас это компактные медицинские аппараты, которые работают во всех областях медицины и косметологии.